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Future Fuel Cycle Options

Domestic Fuel Cycle Options

Title Description Challenges

Open Once Through High Temperatures, Volumes
Current US PWR Fleet
No Separations
No Recycling
Higher Burnups

Modified Open Partial Recycling Both high volumes
Next Gen. PWR Fleet and variable spent fuel streams
Limited Separations
Limited Transmutation
Advanced Fuel Forms
HLW treatment

Closed Full Recycling Variable spent fuel streams
Full Separations
Full Recycling
VHTGR, SFRs,
other transmutation
HLW treatment

Table 1 : Domestic Fuel Cycle Options
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Disposal Geology Options Considered

Figure 1 : U.S. Salt Deposits, ref.
[20].

Figure 2 : U.S. Clay Deposits, ref.
[6].

Figure 3 : U.S. Crystalline Basement,
ref. [20].

Figure 4 : U.S. Granite Beds, ref.
[4].
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Cyclus Top Level Fuel Cycle Simulator

Figure 5 : Top level simulators are intended to model the collective behavior of
various fuel cycle decisions and strategies [19].

Figure 6 : cyclus.github.com [12].
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Need For an Integrated Repository Model

Repository Capabilities within Systems Analysis Tools

Tool Institution Fuel Disposition Radionuclide Transport Heat Transport
NUWASTE[1] NWTRB yes no no
VISION [26] INL yes no YMR only
DANESS [24] ANL no no no
COSI [2] CEA yes no yes
NFCSim [21] LANL no no no
CAFCA [9] MIT no no no
ORION [9] BNL no no no
TSM [23] OCRWM yes no YMR only

Table 2 : System tools are lacking in radionuclide transport and heat transport
calculations in generic geologic media.
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Contributions from This Work

This work has provided a platform capable of bridging the gap between fuel
cycle simulation and repository performance analysis.

• Conducted thermal transport sensitivity analyses. [14, 13]

• Conducted contaminant transport sensitivity analyses. [15]

• Cyder acheived integration with a fuel cycle simulator.

• Abstracted physical models of thermal and contaminant transport. [17]

• Demonstrated dominant physics of those models in Cyder, integrated
with Cyclus. [18, 12]

• Published source code, documentation, and testing to facilitate extension
by external developers. [16]
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Cyder Paradigm : Waste Stream Acceptance

Figure 7 : To participate in a Cyclus fuel cycle simulation, Cyder must accept
arbitrary spent fuel and high level waste material data objects.
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Cyder Paradigm : Waste Stream Conditioning

Figure 8 : In Cyder, discrete waste streams are conditioned into the appropriate
discrete waste form according to user-specified pairings.
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Cyder Paradigm : Waste Form Packaging

Figure 9 : In Cyder, one or more waste forms are loaded into the appropriate waste
package according to user-specified pairings.
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Cyder Paradigm : Waste Package Emplacement

Finally, the waste package is
emplaced in a buffer
component, which contains
many other waste packages,
spaced evenly in a grid. The
grid is defined by the user
input and depends on
repository depth, ∆z , waste
package spacing, ∆x , and
tunnel spacing, ∆y as in
Figure 10.

Figure 10 : The repository layout has a depth and
a uniform package spacing.
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Cyder Paradigm : Modularity
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Cyder Paradigm : Modularity
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Clay GDSM Sensitivity Analysis

• Barrier Degradation

• Sorption

• Solubility

• Advective Velocity

• Diffusivity

Figure 11 : The Clay Generic Disposal System Model (GDSM) was used for
preliminary sensitivity analysis, abstraction iteration, and validation. This figure was
reproduced from Figure 3.3-2 in [5].
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Nested Components

The NuclideModel in a Component can be interchangeably represented by any
of the four nuclide transport models.

• Degradation Rate Based Failure Model

• Mixed Cell with Degradation, Sorption, Solubility Limitation

• Lumped Parameter Model

• 1 Dimensional Approximate Advection Dispersion Solution, Brenner [3]
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Radionuclide Transport: Degradation Rate Based Release

Figure 12 : The control volume contains an intact volume Vi and a degraded volume,
Vd . Contaminants in Vd are available for transport, while contaminants in Vi are
contained.
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Radionuclide Transport : Mixed Cell with Sorption and Solubility

Figure 13 : The degraded volume is modeled as a solid degraded volume, Vds , and a
fluid degraded volume, Vdf . The intact volume is modeled as an intact solid volume,
Vis , and an intact fluid volume Vif . Only contaminants in Vdf are available for
transport.
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Radionuclide Transport : Mixed Cell Sorption

The mass of contaminant sorbed into the degraded and precipitated solids can
be found using a linear isotherm model [22], characterized by the relationship

si = KdiCi (1)

where

si = the solid concentration of isotope i [kg/kg ]

Kdi = the distribution coefficient of isotope i[m3/kg ]

Ci = the liquid concentration of isotope i [kg/m3].
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Radionuclide Transport : Mixed Cell Solubility Limitation

In addition to engineered barriers, contaminant transport is constrained by the
solubility limit [11],

ms,i ≤ VwCsol,i , (2)

where

ms,i = solubility limited mass of isotope i in volume Vw [kg ]

Vw = volume of the solution [m3]

Csol,i = solubility limit, the maximum concentration of i [kg/m3].
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Radionuclide Transport: Lumped Parameter Transport Model

Cin0 Cout0 = Cin1 Cout1 = Cin2 Cout2 = Cin3 Cout3

Figure 14 : The method by which each lumped parameter component is modeled is
according to a relationship between the incoming concentration, Cin(t), and the
outgoing concentration, Cout(t).

Cout(t) =

∫
∞

0

Cin(t − t
′
)g(t

′
)e

−λt′
dt

′
(3)

where

t
′
= time of entry [s]

t − t
′
= transit time [s]

g(t − t
′
) = response function, a.k.a. transit time distribution[−]

λ = radioactive decay constant[s
−1

].
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Radionuclide Transport: 1D Finite, Cauchy B.C.

∂C
∂z

∣

∣

L
= 0

C(z , 0) = Ci

−D ∂C
∂z

∣

∣

z=0
+ vC =

{

vC0 t < t0

0 t > t0

z = Lz = 0

Figure 15 : A one dimensional, finite, unidirectional flow, solution with Cauchy and
Neumann boundary conditions [25, 3].

23 / 46



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Clay GDSM Degradation Rate Sensitivity
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Figure 16 : 129I waste form degradation rate sensitivity.
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Cyder Degradation Rate Sensitivity
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Figure 17 : Sensitivity demonstration of the degradation rate in Cyder for an
arbitrary isotope.
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Clay GDSM Sorption Sensitivity

Figure 18 : Kd sensitivity. The peak annual dose due to an inventory, N, of each
isotope.
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Cyder Sorption Sensitivity
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Figure 19 : Kd factor sensitivity in the Cyder tool for an arbitrary isotope assigned a
variable Kd coefficient.
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Clay GDSM Solubility Sensitivity

Figure 20 : Solubility limit sensitivity. The peak annual dose due to an inventory, N,
of each isotope.

28 / 46



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Cyder Solubility Sensitivity
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Figure 21 : Sensitivity demonstration of solubility limitation in Cyder for an
arbitrary isotope assigned a variable solubility limit.
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Specific Temperature Change Calculations

A reference data set of temperature change curves was calculated. Repeated runs of a detailed
model ([10, 8, 7]) over the range of values in Table 3 determined Specific Temperature Change
(STC) values over that range.

Thermal Cases

Parameter Symbol Units Value Range

Diffusivity αth [m2
· s−1] 1.0 × 10−7

− 3.0 × 10−6

Conductivity Kth [W · m−1
· K−1] 0.1 − 4.5

Spacing S [m] 2, 5, 10, 15, 20, 25, 50
Radius rlim [m] 0.1, 0.25, 0.5, 1, 2, 5

Isotope i [−] 241,243Am,
242,243,244,245,246Cm,

238,240,241,242Pu
134,135,137Cs

90Sr

Table 3 : A thermal reference dataset of STC values as a function of each of these
parameters was generated by repeated parameterized runs of the LLNL MathCAD
model[7, 8].

30 / 46



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Thermal Base Case Demonstration

Figure 22 : This comparison of STC calculated thermal response from Cm inventory
per MTHM in 51GWd burnup UOX PWR fuel compares favorably with results from
the semi-analytic model from LLNL.

31 / 46



Motivation
Modeling Capabilities

Conclusion

Cyder Overview
Radionuclide Transport in Cyder
Thermal Transport in Cyder

Thermal Base Case Demonstration

Figure 23 : Percent error between the semi-analytic model from LLNL and the STC
calculated thermal response from Cm inventory per MTHM in 51GWd burnup UOX
PWR fuel demonstrates a maximum percent error of 4.4%.
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LLNL Model Thermal Conductivity Sensitivity

Figure 24 : Increased thermal conductivity decreases the temperature (here
represented by STC) at the limiting radius.
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Cyder Thermal Conductivity Sensitivity
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Figure 25 : Cyder results agree with those of the LLNL model. Increased Kth

decreases temperature change at the limiting radius. The above example thermal
profile results from 10kg of 242Cm, αth = 2× 10−7, s = 5m, and rlim = 0.25m.
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LLNL Model Thermal Diffusivity Sensitivity

Figure 26 : Increased thermal diffusivity decreases temperature change (here
represented by STC) at the limiting radius (here rcalc = 0.5m).
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Cyder Thermal Diffusivity Sensitivity
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Figure 27 : Cyder trends agree with those of the LLNL model, in which increased
thermal diffusivity results in reduced temperature change at the limiting radius. The
above example thermal profile results from 10kg of 242Cm.
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Conclusion : Summary of Contributions

This work has provided a software platform capable of bridging the gap
between fuel cycle simulation and repository performance analysis.

• Conducted thermal transport sensitivity analyses. [14, 13]

• Conducted contaminant transport sensitivity analyses. [15]

• Cyder acheived integration with a fuel cycle simulator.

• Abstracted physical models of thermal and contaminant transport. [17]

• Demonstrated dominant physics of those models in Cyder, integrated
with Cyclus. [18, 12]

• Published source code, documentation, and testing to facilitate extension
by external developers. [16]
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Conclusion : Suggested Future Work

Further work could include

• cultivation of a developer community,

• more detailed benchmarking validation against sophisticated tools,

• comparison against experimental data, where available,

• demonstration of dynamic fuel cycle feedback sensitivities,

• additional physics (fracture models, biosphere models),

• and additional supporting data.
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