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Introduction
Load-following

Molten Salt Reactors
Research objectives

UIUC Project Overview

Pl: Huff
Co-Pls: Brooks, Heuser, Kozlowski, Stubbins

Objective: This project will establish a xenon removal sparger design to enable load
following in liquid-fueled MSRs at ramp rates comparable or superior to

natural gas peaking generation, (—-—mjfrl‘(ﬁ/%e)-

® |oad following Molten Salt Reactors are potentially transformative

® But, feasible online xenon removal system designs are absent.

The UIUC project will unlock the benefits of MSRs by bounding these designs
® via simulation of multiple physics

® fluid dynamics,
® neutronics,
® and fuel cycle dynamics.

® and with novel mass transport and sparging experiments.
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Introduction

UIUC Project Thrusts

pump CFD simulation task
m Load following simulation task
&7 <7 Fuel cycle simulation task
Experimental task
x freeze plug

nickel filter

helium sparging

5% 235U feed D_ entrainment separator

Figure 1: In 4 major thrusts the project will establish a feasible design for the sparging
system, an overlooked MSR component essential to load following in thermal MSRs.
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Parameter
Power

Salt Composition

Ramp Rate

Ramp Frequency

Bubble volume
fraction

Moderator rod
configurations

Control rod
positions

Introductiol

Range
0-1250 MWth

BOL - Equilibrium
(various)

0% - 20% of 1250
MWth/minute

Goal: 0.1 HFP/min.

10° - 107 [bubble/total]

Asin [1] and [3].

25 control rod positions,

zero to full power.

Notes
CZP-HFP
via Task 2

Goal: safely ramp at 10%
Stretch goal: 20%

Simulate to failure (i.e. 0.2
HFP/min)

Informed by Tasks 1 and 4

Baseline assumes static moderator
rod configuration.

As needed to simulate control
during ramping transients.

Table 1: Operating conditions and transients to be investigated and constraints that the

core must meet.
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Introductiol

Notes
CZP-HFP
via Task 2
Ramp Rate 0% - 20% of 1250 Goal: safely ramp at 10%
MWth/minute Stretch goal: 20%
Ramp Frequency Goal: 0.1 HFP/min. Simulate to failure (i.e. 0.2
HFP/min)
Bubble volume 10_6 - 10_2 [bubble/total] Informed by Tasks 1 and 4
fraction
Moderator rod Asin [1] and [3]. Baseline assumes static moderator
configurations rod configuration.
Control rod 25 control rod positions, As needed to simulate control
positions zero to full power. during ramping transients.

Table 1: This work establishes that xenon removal may be unnecessary, even
unadvisable, at BOL or for fast spectrum MSRs. Thermal and EOL reactors are
expected to require xenon sparging.
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Introduction Load-following

Why is load following a game changer?

$/MWh
UMIN/S

RT-.H.HUB.LMP
11/03/2019 - 09:00
$-2.77

23 Nov3 01 02 03 04 05 06 07 08 09 10 1" 12 13 14 15 16 17 18 19 20 21 22 23
Time
Figure 2: ISO New England hourly electricity price; November 3, 2019 from 00:00AM to 11:00PM
(Source: https://www.iso-ne.com/).
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Introduction Load-following

Molten Salt Reactors

Research objectives

Nuclear Power Plant Load-Following

@ Thermal strain and stress to fuel materials.

® Moderator effect (primary coolant temperature change)

® Doppler effect (fuel temperature change)

© Fuel burnup (low excess reactivity at the end-of-cycle (EOC))
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Introduction Load-following

Molten Salt Reactors

Research objectives

Nuclear Power Plant Load-Following

@ Thermal strain and stress to fuel materials.

® Moderator effect (primary coolant temperature change)

® Doppler effect (fuel temperature change)

© Fuel burnup (low excess reactivity at the end-of-cycle (EOC))
© '* Xe poisoning (iodine pit)
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Introduction

Load-following

What is Xenon-135 poisoning? [2]
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Introduction

Load-following
Molten Salt Reactors

Research objectives

MSR (Molten Salt Reactor) types

@ Graphite block with TRISO fuel, clean salt works as coolant (Fluoride-Salt-Cooled
High-Temperature Reactor (FHR))

® Plate Fuel: hexagonal fuel assembly is similar in shape to a typical sodium-cooled
reactor

©® Fuel Inside Radial Moderator (FIRM)
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Introduction
Load-following

Molten Salt Reactors
Research objectives

MSR (Molten Salt Reactor) types

@ Graphite block with TRISO fuel, clean salt works as coolant (Fluoride-Salt-Cooled
High-Temperature Reactor (FHR))

® Plate Fuel: hexagonal fuel assembly is similar in shape to a typical sodium-cooled
reactor

©® Fuel Inside Radial Moderator (FIRM)

® Solid
® Mobile solid fuel elements (pebbles) cooled by clean salt (PB-FHR)
® Liquid
® Without on-site fuel reprocessing facility (TerraPower Molten Chloride Fast Reactor
(MCSFR))

® With on-site fuel reprocessing (Transatomic Power (TAP) MSR, Molten Salt Breeder
Reactor (MSBR))
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Introduction

Molten Salt Reactors

Liquid Fuel with on-site reprocessing facility
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Figure 3: The TAP reactor conceptual schematic (including reprocessing system) [4].
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Introduction

Research objectives

Research objectives of this work

Analyze TAP MSR neutronic performance during load-following at the
Beginning of Life (BOL) and without online fission product removal. The

neutronics performance for the Middle of Life and End of Life will be different,
and will require fission product removal.

@ Create high-fidelity full-core 3-D model of TAP concept, without any
approximations using Serpent [5]
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Introduction

Research objectives

Research objectives of this work

Analyze TAP MSR neutronic performance during load-following at the
Beginning of Life (BOL) and without online fission product removal. The

neutronics performance for the Middle of Life and End of Life will be different,
and will require fission product removal.

@ Create high-fidelity full-core 3-D model of TAP concept, without any
approximations using Serpent [5]

@ Perform fuel salt depletion to study **Xe/***I balance dynamics during
load-following

® Analyze ke dynamics during load-following

©® Compare obtained results with well-studied Pressurized Water Reactor
(PWR) behavior
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@ Methodology
Full-core TAP MSR Serpent model
Load-following transient
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Methodology Full-core TAP MSR Serpent model
Load-follow

ng transient

TAP concept design

Table 2: Summary of principal data for the
Transatomic Power (TAP) Molten Salt Reactor

(MSR) [4, 6].

Thermal power

Electric power

Gross thermal efficiency
Outlet temperature
Fuel salt components
Fuel salt composition
Startup fissile material
Moderator

Neutron spectrum
Moderator-to-fuel ratio
(MFR)

1250 MW,y

520 MW,

44%

620°C

LiF-UF4

72.5-27.5 mole%

59, 235

Zirconium Hydride
(ZrH1.66) rods (with
silicon carbide cladding)
thermal/epithermal
varies in (0.1099, 1.0)

Figure 4: The TAP MSR schematic core
view showing moderator rods configuration
at Beginning of Life (BOL) [6].
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Introduction
Methodology Full-core TAP MSR Serpent model
sults

Conclusions

TAP concept full-core high-fidelity Serpent model

Wlddeeels [

Figure 5: An XY (left) and XZ (right) section of the TAP model. The violet color represents
zirconium hydride, the yellow represents fuel salt [7].
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Methodology
Load-following transient

Postulated worst-case load-following scenario

100 - Powerload
@ Startup with fresh fuel and operation on
100% power level for 96h to reach
807 135X e/ equilibrium
_ ® Instantaneous power drop from 100%
£ 60 to 0%
Q
@ ©® Shutdown state for 7.66h to reach the
= 135
% 20 Xe peak
= @ Startup from 0 to 100%, and then
operation on 100% for 16h
20 A
] | | . . _.— ® All control rods are fully withdrawn
0 20 0 Tlme?a] 80 100 ® Online reprocessing system is disabled
Figure 6: Assumed load-following power ® 15-min depletion steps in the transient
variation.
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© Results
Multiplication factor dynamics
135Xe /1| balance
Neutron spectra

Andrei Rykhlevski Impact of 135Xe on a Load Following TAP MSR 16/26



Multiplication factor dynamics

Results

Multiplication factor dynamics after shutdown
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Figure 7: Multiplication factor for PWR
assembly after shutdown (o & 20pcm shaded).

® —1500pcm reactivity insertion due to
135X e poisoning

® koo reached local minima =~ 7 hrs after
shutdown

© overall reactivity swing 1750pcm
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® —1500pcm reactivity insertion due to
135X e poisoning

® koo reached local minima =~ 7 hrs after
shutdown

© overall reactivity swing 1750pcm
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Figure 8: Multiplication factor for TAP after
shutdown (o £ 7.5pcm shaded).

® +130pcm reactivity insertion because
loss of 1**Xe from decaying to **Cs is
larger than gain from *°| decay

® koo has no local minima
© overall reactivity swing 270pcm
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Results

Fuel salt composition dynamics
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135)(«3/135I balance

® *°1/"Xe number density ratio is 2.3
(PWR) and 0.9 (TAP)

® 3°| half-life 6.6h < ¥Xe half-life 9.2h

©® PWR accumulated significant 33|

inventory which caused large xenon
concentration peak (150%)

0 In TAP, **Xe gain from ¥ decay did
not overcome **Xe decay loss

90.0 92,5 950 97.5 100.0 102.5 105.0 107.5 110.C @ Maybe because the neutron Spectrum s

Time step [h]

Figure 9: Atomic density of 13°Xe and its main
precursor (13°1) after shutdown.

different?
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Results
Neutron spectra

Neutron spectra of PWR vs TAP

107y | 105 @ TAP at beginning-of-life has
much harder spectrum than
10724 L 108 PWR

® Harder neutron spectrum leads

Capture cross-section [b]

Neutron Spectrum [per unit lethargy]

10-31 —o— Xel35

-#- 1135 [10° to weaker '*Xe transmutation
1041 ; to **Xe due to strong energy

10 dependence of the capture
10754 - cross-section
S © 0(n,) slope is much steeper for
107+ : } . ! - 135%e than for 1%
10-° 1077 1075 1073 107! 10!

Energy [MeV]

Figure 10: Neutron spectra normalized by lethargy for the
PWR and TAP vs. 135Xe and 13%| caption cross-section.
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Conclusions

Conclusions

@ The neutron energy spectrum at the beginning-of-life (BOL) for the TAP eactor is
fast = gas removal system can be disabled at BOL

® The spectrum becomes more thermal during operation due to increasing
moderator-to-fuel ratio = the xenon gas removal system must operate to enable
load-following

® Multiplication factor during depletion simulations for postulated load-following
transient demonstrated following dynamics:

® For PWR, dropped rapidly after shutdown; reached maximum poisoning effect
(—1500pcm) =~ 7 hours after shutdown
® For TAP concept, very small change in ke, no effect of 35Xe poisoning was observed

® PWR: the drop happened because miss;/missxe = 2.3 and 135 decays to **Xe faster
(7172 = 6.6h) than 135% e decays to *°Cs (112 =9.17h)

® TAP MSR: no poisoning effect because mss;/mizsxe = 0.9
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Conclusions

Future work

@ Investigate the impact of xenon poisoning for the TAP concept at the end-of-life
(EOL), which night have softer neutron spectrum

® Take into account gas removal system using the online reprocessing tool SaltProc
[8. 9]

© Take into consideration the TAP design adjustable moderator-to-fuel ratio

@ Develop a fuel processing system that enables load-following in a various commercial
thermal molten salt reactors:

® Terrestrial Energy Integral Small Modular Reactor
® ThorCon Small Modular Reactor

® Analyze multi-physics transients using the coupled neutronics/thermal-hydraulics
code Moltres [10]
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