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Research objectives and motivation

Motivation
• Fuel cycle performance analysis for four Fast Molten Salt Reactor (MSR)

concepts requires a depletion simulation over the system lifetime (60 years)
• Full-core 3D 60-year depletion calculations for MSRs using Monte Carlo

code (Serpent/Shift) are computationally prohibitive
(16 mln neutron histories per state point to obtain uncertainty ±7pcm)
• We want to reduce the cost by performing depletion simulations for

representative simplified unit cells using deterministic code (TRITON)

Depletion calculations of MSR with continuous fuel reprocessing
1 Develop high-fidelity 3D models of four different Fast Spectrum MSRs using

Monte Carlo code Serpent 2 [1]
2 Create and validate simplified 2D (XY ) models for SCALE [2] with optimal

cost/accuracy ratio
3 Perform depletion simulation with on-line continuous feeds and removals to

estimate fuel cycle performance of selected designs
3 / 32



Introduction
Methodology

Results
Conclusions

Acknowledgements

Motivation
Fast Molten Salt Reactors

MSR (Molten Salt Reactor) types

Stationary Fuel
1 Graphite block with TRISO fuel, clean salt works as coolant

(Fluoride-Salt-Cooled High-Temperature Reactor (FHR))
2 Plate Fuel: hexagonal fuel assembly is similar in shape to a typical

sodium-cooled reactor
3 Fuel Inside Radial Moderator (FIRM)
4 Liquid fuel salt inside fuel rods cooled by clean salt (Moltex Stable Salt

Reactor)

Mobile Fuel
1 Mobile solid fuel elements (pebbles) cooled by clean salt (PB-FHR)
2 Circulating molten fuel salt which also works as coolant (Molten Salt

Breeder Reactor (MSBR), Molten Salt Fast Reactor (MSFR))
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Stationary and Mobile Solid fuel

Figure 1: TRISO fuel particle (top) and FHR fuel designs (bottom). Source [3] . 5 / 32
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Mobile, Circulating, Liquid Fuel

Figure 2: EVOL MSFR is an example of reactor design with liquid, mobile, circulating
fluoride salt fuel (Image courtesy of Elsa Merle-Lucotte, 2015).
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Why Molten Salt Reactors with circulating fuel?

Liquid-fueled MSR designs have following potential advantages:
1 High coolant temperature (600-750◦C) ⇒ potentially high thermal

efficiency, process heat for chemical industry
2 Fuel diversity (235U, 233U, Thorium, U/Pu)
3 Strong negative temperature feedback of liquid fuel
4 Passive safety ⇒ fuel drains into tanks in emergency
5 High fuel utilization ⇒ less nuclear waste generated
6 On-line (continuous) fuel reprocessing and refueling
7 Can produce more fissile material than it consumes (breeder)
8 Nuclear Spent Fuel Transmuter
9 Unmoderated ⇒ no replacement of an irradiated moderator needed
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Fast Spectrum MSR depletion simulation

Depletion simulations were performed using SCALE/TRITON 6.2.4 Alpha [4]:
• Truly continuous (online) salt reprocessing (removals and feeds)
• Supports only constant or piecewise feed and removal rates
• Depletion over the system lifetime (60 years)
• Simplified geometry (unit cell), a 16× 16 spatial mesh
• 238-group ENDF-B/VII.0 cross-section library

Four different fast MSR designs:
1 European MSFR [5]
2 Molten Chloride Salt Fast Reactor (MCSFR) [6]
3 REBUS-3700 [7]
4 Molten Salt Actinide Recycler and Transmuter (MOSART) [8]
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Table 1: Principal data of selected fast spectrum MSR designs.

Parameter MSFR MCSFR REBUS-3700 MOSART
P [MWth] 3,000 6,000 3,700 2,400

Vfuel [m3] 18 38 55.6 49.05

Vfertile [m3] 7.3 75 — —

Fuel salt LiF-ThF4-
233UF4

NaCl-UCl3-
239PuCl3

NaCl-TRUCl3 LiF-BeF2-
ThF4-TRUF3

Fertile salt LiF-ThF4 NaCl-UCl3 — —

Fuel cycle Th/233U U/Pu U/TRU Th/233U

minit fissile [t] 7.726 9.400 18.061 9.637
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Geometry approximation

Figure 3: Full-core 3D models of MSFR (upper left), MCSFR (lower left), REBUS-3700
(upper right), and MOSART (lower right) and 2D representative unit cell model
(center) showing fuel salt (red), fertile salt (green), and structural material (blue). 12 / 32
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Unit cell model construction

Simplified unit cell geometry for each MSR concept was selected as follows:
1 Fuel-to-fertile salt ratio for unit cell was consistent with full-core model:

V f
core

V f
blanket

= Au
core

Au
blanket

2 Size of unit cell was adjusted to obtain ku
∞ as close to k f

eff as possible
3 Structural material volume for unit cell was varied to get neutron energy

spectrum shape close to full-core spectrum
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The geometry and size for unit cell are optimized using specific rules:
1 Multiplication factor has less than 300pcm difference between approximated

and full-core geometry
2 Pearson correlation coefficient r for neutron spectrum:

r =
∑N

i=1(Φf
i − Φf )(Φu

i − Φu)√∑N
i=1(Φf

i − Φf )2
∑N

i=1(Φu
i − Φu)2

> 0.995

3 Approximation error δ in total neutron flux:

δ =

∣∣∣∣∣
∑N

i=1(Φf
i − Φu

i )∑N
i=1 Φf

i

∣∣∣∣∣× 100% < 3%
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Fuel Cycle Performance Evaluation Metrics

Nuclear Fuel Cycle Evaluation and Screening
• The DOE-NE funded a study to conduct an evaluation and screening of

nuclear fuel cycle options
• The study formulated sixteen Evaluation Metrics (EM)

Evaluation metrics calculated based on continuous reprocessing depletion herein:
1 Natural uranium per energy generated (for MCSFR, REBUS-3700)
2 Natural thorium per energy generated (for MSFR, MOSART)
3 Mass of spent nuclear fuel (SNF)+high level waste (HLW) disposed per

energy generated
4 Mass of depleted uranium (DU) + recovered uranium (RU) + recovered

thorium (RTh) disposed per energy generated
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Accuracy of unit cell geometry (1/2)

Figure 4: Neutron flux energy spectrum for
full-core and unit cell models for two-fluid
MSFR (top) and MCSFR (bottom). The
neutron population per cycle and the
number of active/inactive cycles for
Serpent simulations were chosen to obtain
a balance between reasonable uncertainty
for a transport problem (±10pcm for
multiplication factor).
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Accuracy of unit cell geometry (2/2)
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Figure 5: Neutron flux energy spectrum for full-core and unit cell models for single-fluid
REBUS-3700 (left) and MOSART (right). Uncertainty for multiplication factor is
±10pcm.
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Approximation accuracy for depletion calculations

Figure 6: Discrepancy in mass of important isotopes in REBUS-3700 for full-core and
unit cell depletion calculations using SERPENT2 without reprocessing. 19 / 32
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Multiplication factor for four MSR designs

Figure 7: Infinite multiplication factor for four reactor designs during 60 years of
operation. 20 / 32
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Evolution of heavy metal inventory: MSFR and MCSFR
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Figure 8: MSFR (left) and MCSFR (right) heavy metal isotopic salt content during operation
calculated with the unit cell model (238-group transport).
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Evolution of heavy metal inventory: MOSART and REBUS-3700
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Figure 9: MOSART (left) and REBUS-3700 (right) heavy metal isotopic salt content.
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Table 2: The E&S evaluation metrics of selected fast spectrum MSR designs

Parameter MSFR MCSFR REBUS MOSART

Evaluation Group EG28 EG23 EG24 EG28

Natural U or Th Utilization [t/GWe-yr] 0.663(Th) 0.973(U) 0.834(U) 0.402(Th)

Mass of SNF+HLW disposed [t/GWe-yr] 0.866 0.894 0.813 0.820

Mass of DU+RU+RTh disposed
[t/GWe-yr]

0.0 0.0 0.0 0.0

Products from Reprocessing/Separation
technology [t]:
RU
RTh
Transuranic elements (TRU)
Fission products (FP)

8.7
41.9
0.36
69.51

83.2
0.0
32.8
140.3

92.6
0
18.9
79.6

3.9
12.9
12.9
54.1
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Conclusions

FS-MSR design depletion with simplified unit cell vs full-core geometry
• Relative error in one-group neutron flux < 3.15%
• Correlation coefficient > 0.9956
• Depleted mass relative error for major isotopes < 1% (for REBUS)
• 20× speedup

Continuous reprocessing depletion simulations for four FS-MSR concepts
• All four selected designs are able to maintain criticality while the salt

inventory is kept constant during lifetime
• Fuel utilization varies from 0.402 tTh/GWe-yr for MOSART to 0.973

MTU/GWe-yr for MCSFR (Metric Bin A, < 3.8 t/GWe-yr)
• SNF+HLW generation for all four designs is consistent with fast spectrum

fuel cycle technologies (Metric Bin A, < 1.65 t/GWe-yr)
• No DU+RU+RTh disposed, assuming we recover all U/Th from the salt
• Fuel Cycle Performance of these fast MSRs is consistent with other fast

reactor technologies 25 / 32
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Future work

Future research effort
1 Code-to-code validation of SCALE/TRITON Alpha against another

continuous reprocessing code (e.g., SERPENT2) and batch-wise Python
package SaltProc [9]

2 MSFR simulation with additional protactinium isolation system which
enhance 233U breeding

3 MSFR simulation with another startup composition (transuranic (TRU)) to
evaluate its performance as a waste burner

4 MCSFR might be optimized to operate with enriched uranium as startup
composition instead of 239Pu

5 Accident safety analysis using coupled neutronics/thermal-hydraulics code,
such as Moltres [10]
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Selected Fast Spectrum MSR designs (extended table)
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Table 3: Principal data of selected fast spectrum MSR designs.

Parameter MSFR MCSFR REBUS-3700 MOSART
Thermal power,
MW

3,000 6,000 3,700 2,400

Fuel salt volume, m3 18 38 55.6 49.05
Fertile salt volume,
m3

7.3 75 — —

Fuel and fertile salt
initial composition,
mol%

LiF-ThF4-
233UF4
(77.5-19.9-
2.6)
LiF-ThF4
(77.5-22.5)

NaCl-UCl3-
239PuCl3
(60-36-4)
NaCl-UCl3
(60-40)

55mol%NaCl+
45mol%(natU+
16.7at.%TRU)Cl3

LiF-BeF2-
ThF4-TRUF3
(69.7-27-1.3)

Fuel cycle Th/233U U/Pu U/TRU Th/233U
Initial fissile inven-
tory, t

7.726 9.400 18.061 9.637

Fissile/fertile salt
temperature, K

973/973 1008/923 900 933
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