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Goal: Algorithmically quantify uranium enrichment in
unknown radiation background fields and Nal(Tl)
detector calibrations.

Motivation:

m Nondestructive U-enrichment measurements enable
nonproliferation, treaty verification, & homeland
security.

m Well-trained Artificial Neural Networks (ANN) may be able
to perform single attribute measurements (i.e. uranium
enrichment) in safeguards scenarios without the
intervention of a spectroscopist.

m Handheld 2” x 2” Nal(Tl) detectors provide an information
barrier due to inherent low-resolution.

m ANNs trained on simulated spectra have demonstrated
good performance in automated Nal y-ray spectroscopy

tasks [1].
Parameter Simulated Range
Isotopes [3°U, 238U, 23°U]
Energy [0 - 3 MeV]

Table 1: y-spectrum templates simulated with MCNP

Parameter Simulated Range Distribution
Enrichment [0%, 100%] uniform

Calibration Gain [0s, 3600s] log-uniform
Integration live time [0s, 3600s] log-uniform
Uranium Mass (mu) [100g, 30kg] log uniform

Table 2: Training dataset (10° spectra)

We simulated a dataset of y-spectra and trained machine
learning algorithms to perform uranium enrichment
measurements without prior knowledge of the
background radiation field and detector calibration.

1. Simulated y-spectrum templates of key isotopes in reprocessed

enriched uranium with MCNP (Table 1)

2. Used LLNL open source package RadSrc to calculate the intrinsic

Yy-ray spectrum from the nuclear decay of a mixture of
radioisotopes.

3. Generated training dataset (Table 2) with background spectra

from GADRAS templates.

4. Optimized a Dense Neural Network (DNN) architecture using a

random hyperparameter search [2].

Results Description

10 DNNs were applied to HEU spectra measured using a 2” x 2”
Nal(Tl) detector at the Device Assembly Facility (Figure 1).
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Figure 1. HEU (93%) spectra measured at the DAF. Solid lines are

measured with a live time of 5 seconds, dotted lines for 750
seconds. Orange and blue lines show two different gain settings.

e The DNN ensemble demonstrated a high bias on the
measured spectra, likely due to:
m Differences between simulated training data and real
spectra
m Inherent low-resolution of Nal(Tl)
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Figure 2. DNN ensemble prediction of uranium enrichment for
two gain settings shown in Figure 1. Red line is at the correct
enrichment of 93%.

Conclusion

281-305, 2012.

[1] M. Kamuda, J. Stinnett, and C. J. Sullivan, “Automated Isotope Identification Algorithm Using Artificial Neural Networks,”
Nuclear Science, vol. 64, no. 7, pp. 1858-1864, Jul. 2017, https://doi.org/10.1109/TNS.2017.2693152.

IEEE Transactions on

[2] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.

e Current simulated training dataset is not accurate enough
for useful automated uranium enrichment measurements
® Future steps:
m Improve accuracy of simulated training dataset
m Apply method to measured Nal spectra of more
enrichment levels
m Investigate the effect of adding shielding to the
training set
m Investigate plutonium isotopic measurements with
unknown shielding and scattering environments with
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