

Introduction and Motivation

• Goal: Algorithmically quantify uranium enrichment in unknown radiation background fields and Nal(TI) detector calibrations.

Motivation:

- Nondestructive U-enrichment measurements enable nonproliferation, treaty verification, & homeland security.
- Well-trained Artificial Neural Networks (ANN) may be able to perform single attribute measurements (i.e. uranium enrichment) in safeguards scenarios without the intervention of a spectroscopist.
- Handheld 2" x 2" Nal(Tl) detectors provide an information **barrier** due to inherent **low-resolution**.
- ANNs trained on simulated spectra have demonstrated good performance in automated Nal y-ray spectroscopy tasks [1].

Parameter	Simulated Range
Isotopes	[²³⁵ U, ²³⁸ U, ²³² U]
Energy	[0 - 3 MeV]

Table 1: y-spectrum templates simulated with MCNP

Parameter	Simulated Range	Dist
Enrichment	[0%, 100%]	unifo
Calibration Gain	[0s, 3600s]	log-ι
Integration live time	[0s, 3600s]	log-ι
Uranium Mass (m _u)	[100g, 30kg]	logι

Table 2: Training dataset (10⁵ spectra)

[1] M. Kamuda, J. Stinnett, and C. J. Sullivan, "Automated Isotope Identification Algorithm Using Artificial Neural Networks," IEEE Transactions on Nuclear Science, vol. 64, no. 7, pp. 1858–1864, Jul. 2017, https://doi.org/10.1109/TNS.2017.2693152. [2] J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," Journal of Machine Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

This work was funded in-part by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534

Using Low-resolution Gamma-ray Spectroscopy and Machine Learning as an Information Barrier for Uranium Enrichment Measurements

Mark Kamuda, Advisor: Professor Kathryn Huff University of Illinois at Urbana-Champaign Consortium for Verification Technology (CVT), June 2019

Results and Discussion

• T n	he f neas	DNN en Sured sp Differer Spectra nheren	semble demo bectra, likely d ices between t low-resoluti	nstrated lue to: simulate on of Na	a higl ed trai	n bias d	on the ata and	real	
Predicted Enrichment	1.0 - 0.9 - 0.8 - 0.7 -								
	0.5 -	Ó	100	200 Live Tii	me (s)	300	40	0	
Fig	ure	2. DNN	ensemble pre	ediction	of urar	nium e	nrichm	ent for	•

two gain settings shown in Figure 1. Red line is at the correct

Conclusion

• Current simulated training dataset is **not accurate enough** for useful **automated uranium enrichment** measurements

Improve accuracy of simulated training dataset Apply method to measured Nal spectra of more Investigate the effect of adding shielding to the

Investigate plutonium isotopic measurements with unknown shielding and scattering environments with low- and medium-resolution detectors

National Nuclear Security Administration