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Advanced Reactors and Fuel Cycles group (PI: Kathryn Huff)

Figure 1: Current Advanced Reactors and Fuel Cycles Group researchers.
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Advanced Reactors and Fuel Cycles group (PI: Kathryn Huff)

Figure 2: Past ARFC Group members who contributed to this work.
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Molten Salt Reactor Types

Stationary Fuel
1 Graphite block with TRISO fuel, clean salt works as coolant (e.g.

TMSR-SF1, FHR-DR)
2 Plate Fuel: hexagonal fuel assembly is similar in shape to a typical

sodium-cooled reactor

Mobile Fuel
1 Mobile solid fuel elements (e.g. pebbles) cooled by clean salt (e.g. PB-FHR)
2 Non-circulating liquid fuel salt (e.g. TerraPower MCFR)
3 Circulating fuel salt which also works as coolant (e.g. Molten Salt Reactor

Experiment (MSRE), Molten Salt Breeder Reactor (MSBR), TAP MSR)
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Stationary and Mobile Solid fuel

Figure 3: TRISO fuel particle (top) and FHR fuel designs (bottom). Source [1].
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Mobile, Non-Circulating, Liquid Fuel

Figure 4: The TerraPower MCFR is an example of reactor design with liquid, mobile,
non-circulating chloride salt fuel. Source [2].
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Mobile, Circulating, Liquid Fuel

Figure 5: The MSBR is an example of reactor design with liquid, mobile, circulating
fluoride salt fuel [3].
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Why Molten Salt Reactors with circulating fuel?

Main advantages of liquid-fueled Molten Salt Reactors (MSRs) [4]
1 High coolant temperature (600-750◦C)
2 Fuel diversity (235U, 233U, Thorium, U/Pu)
3 Increased inherent safety
4 High fuel utilization ⇒ less nuclear waste generated
5 Online reprocessing and refueling
6 Thermal/epithermal (MSBR) or fast spectrum (Molten Salt Fast Reactor

(MSFR))
7 Can produce more fissile material than it consumes (breeder)
8 Nuclear Spent Fuel Transmuter (e.g. REBUS-3700 [5], MOSART [6])
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Challenges in MSR Simulation
1 Contemporary burnup codes cannot treat fuel movement
2 Neutron precursor location is hard to estimate
3 Operational and safety parameters change during reactor operation
4 Power generation strongly depends on fuel temperature and vica versa

Figure 6: Challenges in simulating MSRs (Image courtesy of Manuele Aufiero,2012).
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Research objectives

Multiphysics simulation of MSR (Moltres/MOOSE)[7]
1 Demonstrate steady-state and transient coupling of neutron fluxes,

precursor drift, and thermal-hydraulics
2 Implement advective movement of delayed neutron precursors
3 Demonstrate capabilities with 2D axisymmetric and 3D mesh
4 Simple transients: change of flow and moderator movement
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Acquiring Moltres

git clone https://github.com/arfc/moltres
cd moltres
git submodule init
git submodule update
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Moltres (coupling in MOOSE)

Moltres principal concept [7]
• Moltres is built on top of the Multi-physics Object-Oriented Simulation

Environment (MOOSE)
• MOOSE interfaces with libMesh to discretize simulation volume into finite

elements
• Provides interface for coding residuals that correspond to weak form of

governing PDEs; also interface for coding Jacobians ⇒ more accurate
Jacobians ⇒ more efficient convergence

• Residuals and Jacobians send to PetSc which handles solution of resulting
non-linear system of algebraic equations

Figure 7: Moltres principal scheme
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Intro to Moltres

• Liquid-fueled, molten salt reactors
• Multi-group diffusion (arbitrary number of groups)
• Advective movement of delayed neutron precursors
• Reynolds-averaged Navier-Stokes thermal hydraulics
• 2D axisymmetric
• 3D unstructured or structured
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Moltres Kernels
Typical symbols (e.g. φ = neutron flux, T = temperature, and C = precursor concentrations).
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Moltres Kernels

FissionHeatSource
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GammaHeatSource
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γ = moderator heat dissipation by gamma and neutron irradiation

Qf =
G∑
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εf ,g Σf ,gφg

εf ,g = heat per fission event.
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Moltres Kernels
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Moltres Kernels

ScalarTransportTimeDerivative
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Governing Equations

Time-dependent multi-group diffusion
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Governing Equations (2)

Delayed neutron precursors

Heat conduction-convection with fission source in fuel

Heat conduction with option for irradiation source in moderator
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Multiphysics simulation results (2D)

Figure 8: Fast (φ1) and thermal (φ2) neutron flux obtained using Moltres [7].
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Multiphysics simulation results (2D) (2)

Figure 9: Temperature in channel obtained using Moltres [7].
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Moltres vs MSRE Comparison (2)
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Moltres vs MSRE Comparison (3)
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Multiphysics simulation results (3D)

Figure 10: MSRE steady-state temperature and fast neutron flux [8].
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Scaling on Blue Waters

Blue Waters:
• XK7 nodes (two AMD 6276 Interlagos CPU per node)
• 16 floating-point bulldozer core units per node or 32 ”integer” cores per

node
• nominal clock speed is 2.45 GHz
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Intra-Node Strong Scaling

Figure 11: Moltres intra-node strong scaling efficiency for various problem sizes, for
ncores ∈ [1, 32]. Up to 8 cores, larger problems required considerably more time per
element because of cache overhead. However, beyond 8 cores, scaling demonstrates
asymptotic dependence on the number of processors due to increasing communication
costs. The best parallel efficiency for the intra-node study is approximately 89%,
achieved for the largest problem (28,200 elements).
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Extra-node Strong Scaling

Figure 12: Moltres extra-node strong scaling efficiency for various problem sizes, for
nnodes ∈ [1, 24]. This takes into account communication costs between nodes. Cache
overhead causes performance slow down for larger problems. Beyond 256 cores,
simulation time per element remains almost constant for small cases (86,655 and
173,310 elements) and slighly decreases for the two larger problems. Parallel efficiency
also grows with the problem size and reaches an optimal value of 73% for 664,355
elements. 32 / 43
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Intra-node Weak Scaling

Figure 13: Weak scaling, in seconds per element vs. number of processors, for a
constant number of elements per processor, and ncores ∈ [1, 32]. Largest drop in
performance occurs when the number of cores increases from one to ≈ 8, which
corresponds to switching from no communication to a 2-D domain decomposition.
Further reduction in performance of only about 50% over a range of 32 cores is likely
caused by increased communication latency appearing from collective MPI calls.
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Extra-node Weak Scaling

Figure 14: Weak scaling performance of Moltres on Blue Waters, in seconds per element
vs. number of processors, for a constant number of elements per processor and
ncores ∈ [32, 128]. Performance drops by a factor of three, likely due to poor node
selection by the Blue Waters job scheduler, increased latency and bandwidth costs.
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Scaling Conclusions

Moltres scalability study results clearly indicate:
• Parallelization using LibMesh's automatic domain decomposition is great,

but not perfectly efficient.
• This scaling performance is satisfactory for MSR simulations approached

thus far.
• Moltres is memory-bound and therefore very sensitive to host memory and

memory bandwidth.
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Conclusions

Moltres
• Multiphysics Object-Oriented Simulation Environment (MOOSE)

application developed at University of Illinois at Urbana-Champaign (UIUC)
in the Advanced Reactors and Fuel Cycles (ARFC) group by lead developer
Dr. Alexander Lindsay

• Neutron flux modeled with multigroup diffusion
• Delayed neutron precursor drift is incorporated
• Alongside fuel advection
• Gamma heating
• 2D-axisymmetric and 3D multiphysics results are presented
• Demonstrated strong parallel scaling (up to 384 physical cores)
• Further optimization is required for improved scaling.
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Ongoing work

Demonstration & Verification
1 Verifying models of various MSR types with results generated by custom

multiphysics models (using COMSOL, OpenFOAM, etc.)
• Molten Salt Fast Reactor
• Transatomic Power
• Molten Salt Breeder Reactor
• etc.

2 Demonstrating Moltres capabilities for various transients and operational
behavior:.

• load following
• Loss of Forced Cooling
• Loss of Heat Sink
• Reactivity-Initiated Accident
• etc.
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Future work

Thermal Hydraulics Extensions
Realistic thermal hydraulics will enable more realistic precursor drift. Current
efforts seek to incorporate:

1 Realistic natural circulation (better than Boussinesq approximation)
2 Insights from Computational Fluid Dynamics (CFD) regarding

laminar-turbulent transitional flow behavior (e.g. Nek5000 [9])
3 Fuel salt compressibility (as shown in Aufiero et al. [10]).
4 Fuel composition as a coupled variable.
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