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Figure 1: Current Advanced Reactors and Fuel Cycles Group researchers.
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Molten Salt Reactor Types

® Graphite block with TRISO fuel, clean salt works as coolant (e.g.
TMSR-SF1, FHR-DR)

® Plate Fuel: hexagonal fuel assembly is similar in shape to a typical
sodium-cooled reactor

® Mobile solid fuel elements (e.g. pebbles) cooled by clean salt (e.g. PB-FHR)
® Non-circulating liquid fuel salt (e.g. TerraPower MCFR)

@® Circulating fuel salt which also works as coolant (e.g. Molten Salt Reactor
Experiment (MSRE), Molten Salt Breeder Reactor (MSBR), TAP MSR)
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Figure 3: TRISO fuel particle (top) and FHR fuel designs (bottom). Source [1].
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Mobile, Non-Circulating, Liquid Fuel
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Figure 4: The TerraPower MCFR is an example of reactor design with liquid, mobile,
non-circulating chloride salt fuel. Source [2].



Introduction

Molten salt reactors

Mobile, Circulating, Liquid Fuel
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Figure 5: The MSBR is an example of reactor design with liquid, mobile, circulating
fluoride salt fuel [3].
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Why Molten Salt Reactors with circulating fuel?

® High coolant temperature (600-750°C)

@ Fuel diversity (¥*°U, 23U, Thorium, U/Pu)

® Increased inherent safety

@ High fuel utilization = less nuclear waste generated
@ Online reprocessing and refueling

® Thermal/epithermal (MSBR) or fast spectrum (Molten Salt Fast Reactor
(MSFRY))

@ Can produce more fissile material than it consumes (breeder)
® Nuclear Spent Fuel Transmuter (e.g. REBUS-3700 [5], MOSART [6])
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Challenges in MSR Simulation

@ Contemporary burnup codes cannot treat fuel movement

® Neutron precursor location is hard to estimate

© Operational and safety parameters change during reactor operation

@ Power generation strongly depends on fuel temperature and vica versa
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Figure 6: Challenges in simulating MSRs (Image courtesy of Manuele Aufiero,2012).
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Research objectives

@ Demonstrate steady-state and transient coupling of neutron fluxes,
precursor drift, and thermal-hydraulics

® Implement advective movement of delayed neutron precursors
©® Demonstrate capabilities with 2D axisymmetric and 3D mesh

@ Simple transients: change of flow and moderator movement
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Acquiring Moltres

git clone https://github.com/arfc/moltres
cd moltres

git submodule init

git submodule update
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Moltres (coupling in MOOSE)

e Moltres is built on top of the Multi-physics Object-Oriented Simulation
Environment (MOOSE)

e MOOSE interfaces with libMesh to discretize simulation volume into finite
elements

o Provides interface for coding residuals that correspond to weak form of
governing PDEs; also interface for coding Jacobians = more accurate
Jacobians = more efficient convergence

e Residuals and Jacobians send to PetSc which handles solution of resulting
non-linear system of algebraic equations

Moltres MOOSE & PetSc
LibMesh

Describes MSR Discretize physics Solve algebraic

governing via FEM, couple system of

equations with PDEs & system of equations using

residual functions equations. Newton methods

Figure 7: Moltres principal scheme s



Introduction
Methodology
Result:

Basics

Intro to Moltres

Liquid-fueled, molten salt reactors

Multi-group diffusion (arbitrary number of groups)

Advective movement of delayed neutron precursors

Reynolds-averaged Navier-Stokes thermal hydraulics

2D axisymmetric

3D unstructured or structured
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Typical symbols (e.g. ¢ = neutron flux, T = temperature, and C = precursor concentrations).
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InScatter

G
S
Z ):g/ —>g¢g’
&g’

NtTimeDerivative

1 9,
vg Ot
PrecursorDecay
AiG
PrecursorSource

G
E BIVEL) g
g'=1

ScalarAdvectionArtDiff
V. —6Vu

§ = artificial diffusion coefficient

18 /43



Introduction
Methodology

it Kernels

Moltres Kernels

ScalarTransport TimeDerivative

ou
ot
SelfFissionEigenKernel
—vrZr¢
k
SigmaR
Z;¢g
TransientFissionHeatSource
G
Z er s g s
g=1

19/43



Methodology

nels
Governing Equations

Governing Equations

7& VDV + Ty, = Zz b t AL 2(1— PEL by + 1 ch

V
8 g#g

v, = speed of neutrons in group g
g = flux of neutrons in group g
t = time
D, = Diffusion coefficient for neutrons in group g
I = macroscopic cross-section for removal of neutrons from group g
Z; e = macroscopic cross-section of scattering from g' to g
¢ = prompt fission spectrum, neutrons in group g
G = number of discrete groups, g
v = number of neutrons produced per fission
o1
;(,f = delayed fission spectrum, neutrons in group g

= macroscopic cross section for fission due to neutrons in group g

I = number of delayed neutron precursor groups

J = delayed neutron fraction

Ai = average decay constant of delayed neutron precursors in precursor group i
Ci

concentration of delayed neutron precursors in precursor group i.
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Governing Equations (2)
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Multiphysics simulation results (2D)
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Multiphysics simulation results (2D) (2)
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Figure 9: Temperature in channel obtained using Moltres [7]. o as
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Fig. 11. Moltres and MSRE design (Briggs, 1964, p. 99) predicted axial temperature
profiles in hottest channel and adjacent graphite.
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Fig. 12. The thermal and fast flux profiles at the core mid-plane (z = H/2) for the
Moltres 2-D cylindrical axisymmetric model and the MSRE design model (Briggs,
1964, p. 92) (r = 0 is radial center of core).
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Moltres vs MSRE Comparison (3)
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Fig. 13. Moltres axial flux profiles along the core center line and MSRE design axial
flux profiles 21.336 cm (8.4 inches) from the core center line (Briggs, 1964, p. 91).
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Multiphysics simulation results (3D)

1113.2

LTI

8.486e+02
group|

E5.923e+01
—44.427

N
=
o
)

Z14.814

26.9396-03

Figure 10: MSRE steady-state temperature and fast neutron flux [8].
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Scaling on Blue Waters

Blue Waters:
o XK7 nodes (two AMD 6276 Interlagos CPU per node)

e 16 floating-point bulldozer core units per node or 32 "integer” cores per
node

e nominal clock speed is 2.45 GHz
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Figure 11: Moltres intra-node strong scaling efficiency for various problem sizes, for
Ncores € [1,32]. Up to 8 cores, larger problems required considerably more time per
element because of cache overhead. However, beyond 8 cores, scaling demonstrates
asymptotic dependence on the number of processors due to increasing communication
costs. The best parallel efficiency for the intra-node study is approximately 89%,
achieved for the largest problem (28,200 elements).
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Figure 12: Moltres extra-node strong scaling efficiency for various problem sizes, for
Nnodes € [1,24]. This takes into account communication costs between nodes. Cache
overhead causes performance slow down for larger problems. Beyond 256 cores,
simulation time per element remains almost constant for small cases (86,655 and
173,310 elements) and slighly decreases for the two larger problems. Parallel efficiency

also grows with the problem size and reaches an optimal value of 73% for 664,355
elements.



Results
Conclusion

Scaling Studies

Intra-node Weak Scaling

0.40
0.35} : S S
= : : ="
c : : - ~
] - eIl
£ 030+ : S a = o
o : : .27 LerieT -7
Q : H e el -
— : : - S -
£0.25 Le CerdT -7
] : P Y i Le"
£ . R Tt -
+ 0.20 el et e
c P .-
S R .-
= 1t A P
% 0.15 4';/ ST Ll + -+ 581 elements per core
0] Kt - : ~-+ 985 elements per core
0.10 f’ ==+ 1970 elements per core
f == 3940 elements per core
12 4 8 16 32

Number of processors

Figure 13: Weak scaling, in seconds per element vs. number of processors, for a
constant number of elements per processor, and ncores € [1,32]. Largest drop in
performance occurs when the number of cores increases from one to = 8, which
corresponds to switching from no communication to a 2-D domain decomposition.
Further reduction in performance of only about 50% over a range of 32 cores is likely

caused by increased communication latency appearing from collective MPI calls. s s
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Figure 14: Weak scaling performance of Moltres on Blue Waters, in seconds per element
vs. number of processors, for a constant number of elements per processor and

Ncores € [32,128]. Performance drops by a factor of three, likely due to poor node
selection by the Blue Waters job scheduler, increased latency and bandwidth costs.
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o Parallelization using LibMesh's automatic domain decomposition is great,
but not perfectly efficient.

o This scaling performance is satisfactory for MSR simulations approached
thus far.

e Moltres is memory-bound and therefore very sensitive to host memory and
memory bandwidth.
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e Multiphysics Object-Oriented Simulation Environment (MOOSE)
application developed at University of lllinois at Urbana-Champaign (UIUC)
in the Advanced Reactors and Fuel Cycles (ARFC) group by lead developer
Dr. Alexander Lindsay

e Neutron flux modeled with multigroup diffusion

e Delayed neutron precursor drift is incorporated

o Alongside fuel advection

e Gamma heating

e 2D-axisymmetric and 3D multiphysics results are presented

e Demonstrated strong parallel scaling (up to 384 physical cores)

o Further optimization is required for improved scaling.
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Ongoing work

@ Verifying models of various MSR types with results generated by custom
multiphysics models (using COMSOL, OpenFOAM, etc.)

Molten Salt Fast Reactor

Transatomic Power

Molten Salt Breeder Reactor

etc.

® Demonstrating Moltres capabilities for various transients and operational
behavior:.
* load following
Loss of Forced Cooling
Loss of Heat Sink
Reactivity-Initiated Accident
etc.
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Future work

Realistic thermal hydraulics will enable more realistic precursor drift. Current
efforts seek to incorporate:

® Realistic natural circulation (better than Boussinesq approximation)

® Insights from Computational Fluid Dynamics (CFD) regarding
laminar-turbulent transitional flow behavior (e.g. Nek5000 [9])

©® Fuel salt compressibility (as shown in Aufiero et al. [10]).

@ Fuel composition as a coupled variable.
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