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Introduction

Figure 1: Argonne demonstration of a basic pyro plant [5].
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Motivation

Why model Pyroprocessing?

• Safeguard by design.

• Future fuel cycles.

What is the goal?

PyRe will be used to answer the following questions

• What is the effect of introducing pyroprocessing plants in the fuel cycle?

• How do various facility designs affect throughput and efficiency?

• Where in a pyroprocessing plant will monitoring most effectively detect
material diversion?

The first two can be directly answered by the archetype. The third requires data
analysis via diversion algorithms.
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Cyclus

What is Cyclus?

Cyclus is a modular agent based fuel cycle simulator for tracking commodity
transactions between facilities.

Figure 2: Example fuel cycle[6].
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Why Cyclus?

Cyclus allows the construction of specific scenarios through the addition of
archetypes. These archetypes are modular and the transactions can be tracked.

Figure 3: Diversion detection methods within Cyclus.
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Methodology

How does PyRe work?

PyRe does the following with an
input stream and facility
configuration parameters:

• Pass fuel to voloxidation.

• Generate efficiencies from
parameters.

• Multiply stream by efficiency
matrix.

• Record stream compositions.

• Repeat for each process.
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Figure 4: PyRe material flowchart [2].
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Assumptions

Cyclus Requirements

• Modular.

• Time step ≥ 1 month

• Streams must be in a trade-able form.
• Parameters are constant for the

simulation.
• Equation input toolkit under

development.

• Diversion detection must be added
after.
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Subprocesses - Voloxidation
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Figure 5: Voloxidation material balance area [3].
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Subprocesses - Electroreduction
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Figure 6: Reduction material balance area [4].
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Subprocesses - Electrorefining
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Figure 7: Refining material balance area [4]. 14 / 29
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Subprocesses - Electrowinning

Electrowinning

Time

Current

Shroud

Lanthanides

Fission Products

Power Draw

LiCl-KCl + U/TRU

FP/Salt/U

Figure 8: Winning material balance area.
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Average Sim

The first simulation is an example facility with the following input values:

• Temperature – 900 ◦ C

• Pressure – 500 mTorr

• Rotation – 100 rpm

• Current – 8 A

• Time – 1 hr

The simulation is run for 20 time steps with simple source and sink archetypes to
facilitate trading.
This scenario was run to verify trading capabilities and general separations.
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Average Sim - Results

Figure 9: Product time series of a simple
simulation.

Figure 10: Waste time series of a simple
simulation.
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Isotopic Composition of Waste Streams

Figure 11: Isotopic Composition of Average Waste Streams
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High Current Simulation

Secondly, a scenario was run with a current increase from 8 amps to 10 amps to
observe potential diverted material.

• Temperature – 900 ◦ C

• Pressure – 500 mTorr

• Rotation – 100 rpm

• Current – 10 A

• Time – 1 hr

The simulation is run for 20 time steps with simple source and sink archetypes to
facilitate trading.
We expect only Electroreduction and Electrowinning streams to change.
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Current Diversion

Figure 12: Isotopic Composition of Current Diverted Waste Streams
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Max Diversion Scenario

Finally, a simulation was created to observe the maximum possible material
discrepancy. This was done by running two separate simulations, one with each
parameter at their maximum efficiency and the other at their minimums. The
difference of these results will show how much of each material can be diverted.

• Temperature – 1000 ◦C vs. 500 ◦C

• Pressure – 120 mTorr vs. 760 mTorr

• Rotation – 100 rpm vs. 0 rpm

• Current – 10 A vs. 4 A

• Time – 4 hr vs. 1 hr

The simulation is run for 20 time steps with simple source and sink archetypes to
facilitate trading.
Note: The values shown are cumulative over 20 transactions/months (Pu is of
interest)
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Isotopic Range

Figure 13: Range of Isotopic Values
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Future Work

We have shown that PyRe allows Cyclus to simulate a simple pyroprocessing
scenario. Future work includes:

• Increase scenario complexity - test shadow diversion
• Improve user input

• Allow user-defined equations as input

• Chemistry first principles

Uses of PyRe:

In the beginning we marked the following objectives:

• What is the effect of introducing pyroprocessing plants in the fuel cycle?

• How do various facility designs affect throughput and efficiency?

• Where in a pyroprocessing plant will monitoring most effectively detect
material diversion?
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Diversion Algorithm

The first two questions can be answered
through the addition of PyRe to Cyclus.
However, to address the last we must
employ an algorithm to analyze small
differences between multiple simulations.
The following are being considered to
provide ’online’ diversion detection:

• Cumulative Sum (CUSUM)

• Maximum likelihood
Figure 14: Example of a cumulative sum
alarm [1].
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