Validation of Spent Nuclear Fuel Output by Cyclus, a Fuel Cycle Simulator Code

Gwendolyn J. Chee, Gyutae Park & Kathryn D. Huff
Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

November 12, 2018
1 Background and Motivation
 Nuclear Waste Repository Model
 Cyclus
 Validation

2 Method
 Cyclus Simulation of historic U.S. nuclear fuel cycle
 Comparison of Cyclus Simulation against Unified Database

3 Results
 Cyclus vs. Unified Database: Total Spent Fuel Mass
 Cyclus vs. Unified Database: Major Isotopic Composition

4 Conclusion
 Conclusion
 Future Work
Long Term Goal

Run simulations to determine how varying certain variables in the nuclear fuel cycle impacts the mass loading of a nuclear waste repository for the U.S. nuclear fuel cycle.

Variables

- used fuel allocation strategies
- waste package material properties
- repository parameters
- presence of interim facilities
Cyclus is an agent-based nuclear fuel cycle simulator with a modular architecture.

Figure 1: Once Through Nuclear Fuel Cycle [1]
Barriers in a Waste Repository

The main constraint for loading of a waste repository is the **thermal constraint** set by the material properties of the repository.

Figure 2: Layers of Waste Repository Barrier System
Heat Flux through Barriers in a Waste Repository

Waste package thermal evolution depends on the **decay heat contribution from each isotope** in the spent fuel.

![Figure 3: Layers of Waste Repository Barrier System](image)

Significant isotopes for **long term** decay heat contribution [5]
- ^{240}Pu
- ^{241}Am
- ^{239}Pu

Significant isotopes for **short term** decay heat contribution [5]
- ^{238}Pu
- ^{244}Cm
- ^{90}Sr
- ^{137}Cs
Motivation for conducting the Validation

Reason for Validation:

Check if the cyclus simulation gives total spent fuel masses and isotopic compositions that closely replicates reality.

Figure 4: Accurate simulations for loading of a waste repository relies on accurate heat flux and isotopic composition information
Outline

1 Background and Motivation
 Nuclear Waste Repository Model
 Cyclus
 Validation

2 Method
 Cyclus Simulation of historic U.S. nuclear fuel cycle
 Comparison of Cyclus Simulation against Unified Database

3 Results
 Cyclus vs. Unified Database: Total Spent Fuel Mass
 Cyclus vs. Unified Database: Major Isotopic Composition

4 Conclusion
 Conclusion
 Future Work
Cyclus Simulation of historic U.S. nuclear fuel cycle

A Cyclus simulation of the U.S. nuclear fuel cycle was created using historic United States reactor deployment data obtained from the Power Reactor Information System (PRIS) database [4].

Simulation Assumptions
Facilities present in the simulation: mine, mill, enrichment plant, fuel fabrication facility, 112 historic commercial reactors in the U.S, dry storage facility and a final waste repository.

Recipe Reactor Facility Assumptions
- **Refueling time**: 1 month
- **Cycle length**: 18 months
- **Single Spent Fuel Recipe**: 33 or 51 GWDt/MTU burnup (depletion calculations done using ORIGEN)
- **Assembly size, Core size, Batch size**: dependent on the reactor type
- **Power cap, Location**: specific to each reactor from PRIS data
CycMap: Cyclus Simulation of historic U.S. nuclear fuel cycle

Figure 5: Cycmap of the historic Cyclus U.S nuclear fuel cycle simulation [3]
Power demand: Cyclus Simulation of historic U.S. nuclear fuel cycle

Figure 6: Power generated between 1971 and 2016 from the *Cyclus* simulation

Figure 7: Power generated between 1971 and 2016 as published by the NEI [2]
The total spent fuel mass and specific isotopic compositions from the Cyclus simulation and Unified Database were compared.

Unified Database is part of a larger engineering analysis tool, the Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS).

It contains commercial SNF information from 1968 through 2013. [4].

Figure 8: UNF-ST&DARDS Unified Database and the Automatic Document Generator Journal Article
Outline

1 Background and Motivation
 Nuclear Waste Repository Model
 Cyclus
 Validation

2 Method
 Cyclus Simulation of historic U.S. nuclear fuel cycle
 Comparison of Cyclus Simulation against Unified Database

3 Results
 Cyclus vs. Unified Database: Total Spent Fuel Mass
 Cyclus vs. Unified Database: Major Isotopic Composition

4 Conclusion
 Conclusion
 Future Work
Cyclus vs. Unified Database: Total Spent Fuel Mass

General Conclusion: Cyclus simulation overpredicts total spent fuel mass before 2000 and underpredicts total spent fuel mass after 2000.

Figure 9: The cumulative spent fuel mass against discharge time for Cyclus and Unified Database data from 1968 through 2013.
Varying Refueling durations in Cyclus Simulation

General Conclusions: Longer reactor refueling durations shifts Cyclus simulation results closer to UDB results before the year 2000.

![Cumulative mass of spent fuel vs. discharge year](image)

Figure 10: The cumulative spent fuel mass against discharge time for Cyclus and Unified Database data from 1968 through 2013 for varying refueling durations.
Varying Cycle durations in Cyclus Simulation

General Conclusions: Shorter reactor cycle lengths shifts Cyclus simulation results closer to UDB results after the year 2000.

Figure 11: The cumulative spent fuel mass against discharge time for Cyclus and Unified Database data from 1968 through 2013 for varying cycle durations.
Cyclus vs. Unified Database: Major Isotopic Composition

Figure 12: The absolute difference between cumulative spent fuel mass calculated by Unified Database and Cyclus for each isotope. Spent fuel burnup of 51 GWD/MTU is used in the Cyclus simulation. Positive difference indicates Cyclus mass estimate is larger.
Figure 13: The absolute difference between cumulative spent fuel mass calculated by Unified Database and CYCLUS for each isotope. Spent fuel burnup of 33 GWDt/MTU is used in the CYCLUS simulation. Positive difference indicates CYCLUS mass estimate is larger.
Burn up of Spent Nuclear Fuel

In 1990, Burnup = 33.215 GWDt per MTU

Figure 14: The average burnup for U.S. nuclear reactors from 1968 to 2013 [4].
Cyclus vs. Unified Database: Major Isotopic Composition

Figure 15: The absolute difference between cumulative spent fuel mass calculated by Unified Database and Cyclus for each isotope at year 1990. Positive difference indicates Cyclus mass estimate is larger.
Figure 16: The absolute difference between cumulative spent fuel mass calculated by Unified Database and CYCLUS for each isotope at year 2000. The boxed isotopes are the major decay heat contributors.
Figure 17: The absolute difference between decay heat calculated by Unified Database and Cyclus for each significant isotope at year 2000.
Outline

1 Background and Motivation
 Nuclear Waste Repository Model
 Cyclus
 Validation

2 Method
 Cyclus Simulation of historic U.S. nuclear fuel cycle
 Comparison of Cyclus Simulation against Unified Database

3 Results
 Cyclus vs. Unified Database: Total Spent Fuel Mass
 Cyclus vs. Unified Database: Major Isotopic Composition

4 Conclusion
 Conclusion
 Future Work
These results demonstrate that the spent fuel mass calculated by the Cyclus simulation for the US nuclear fuel cycle follow similar trends as the real world metrics. However, there are significant mass differences in the important isotopes that contribute to decay heat.

Deviations from the real world metric can be explained by issues with the reactor facility in the Cyclus model:

- only accepting constant values for cycle and refueling durations
- single spent fuel recipe
To more accurately model isotopic concentrations in the Cyclus simulation, these capabilities could be implemented in Cyclus:

- Reactor facility that is tied to a database of varying spent fuel recipes based on burnup + Toolkit that gives the functionality of varying cycle time and refuel duration values
- Reactor facility that is tied to the Unified database to give different spent fuel recipes based on the burnup of a specific spent fuel bundle
This work is supported by U.S. Department of Energy, Nuclear Energy University Program, under contract #NEUP-FY16-10512.
References I

[2] NEI.
U.S. Nuclear Generating Statistics.

UNF-ST&DARDS Unified Database and the Automatic Document Generator.

Separations and Transmutation Criteria to Improve Utilization of a Geologic Repository.