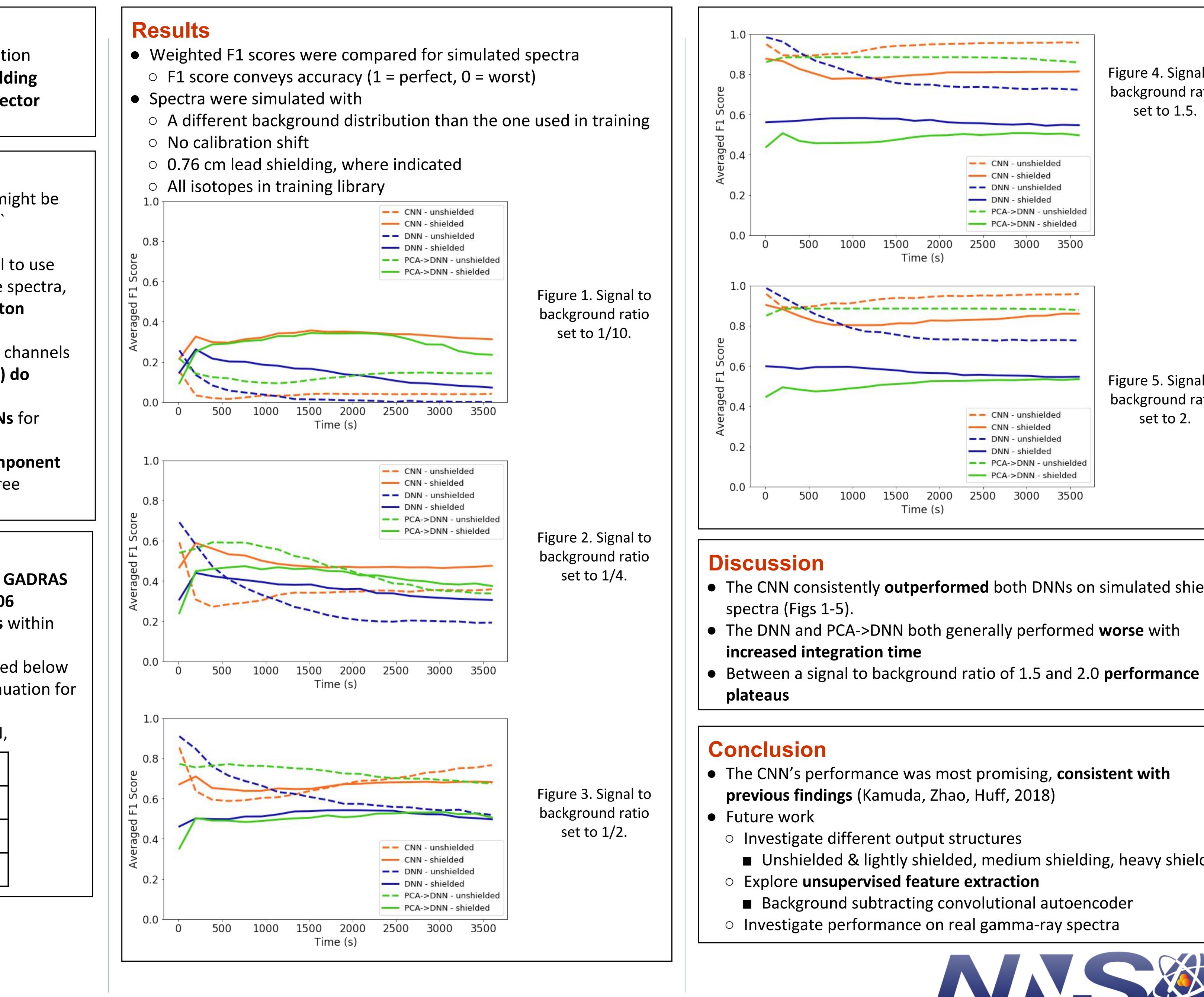
A Machine Learning Approach to Identifying Shielded Radioisotopes in Gamma-Ray Spectra

Goals and Objectives

 Main goal: Develop Nal-based radioisotope identification algorithms that can identify sources in unknown shielding configurations, radiation background fields, and detector calibrations

Introduction

- Machine learning and pattern recognition algorithms might be able to incorporate "intangibles based on experience`` (Rawool-Sullivan et al., 2010)
- For **low-resolution detectors** it may be more beneficial to use algorithms that leverage more **abstract features** of the spectra, such as the shape of **overlapping peaks** and the **Compton** continuum.
- **Dense neural networks (DNNs) do not** assume nearby channels are related, while **convolution neural networks (CNNs) do** assume local channels are related
- Because of this, CNNs may operate better than DNNs for automated gamma-ray spectroscopy
- **Dimension reduction** techniques such as **principle component** analysis (PCA) prevents model overfitting by limiting free parameters


Methodology

- Gamma-ray spectrum templates were simulated using **GADRAS** • 29 isotopes based on the ANSI Standard N42.34-2006
 - Spectra were simulated with linear calibration shifts within
 - ±15 channels for a 661 keV photopeak
 - Shielding materials and thicknesses included are listed below Materials correspond to 20%, 40%, and 60% attenuation for a 662 keV photopeak
- Templates were then used to train a classification DNN, PCA->DNN. and CNN

		Material Thickness [cm]		
	Aluminum	2.3	4.1	7.2
	Iron	0.87	1.6	2.8
	Lead	0.42	0.76	1.3

Mark Kamuda, Advisor: Professor Kathryn Huff University of Illinois at Urbana-Champaign CVT Workshop, October 2018

This work was funded by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534. Additionally, the authors are grateful to Dr. Clair Sullivan who was instrumental in the early stages of this work.

		Figure 4. Signal to background ratio set to 1.5.
500 2000 Time (s)	 CNN - unshielded CNN - shielded DNN - unshielded DNN - shielded PCA->DNN - unshielded PCA->DNN - shielded 2500 3000 3500 	
		Figure 5. Signal to
	 CNN - unshielded CNN - shielded DNN - unshielded DNN - shielded PCA->DNN - unshielded PCA->DNN - shielded 	background ratio set to 2.
500 2000 Time (s)	2500 3000 3500	

• The CNN consistently **outperformed** both DNNs on simulated shielded

- The DNN and PCA->DNN both generally performed **worse** with
- The CNN's performance was most promising, consistent with previous findings (Kamuda, Zhao, Huff, 2018)
 - Unshielded & lightly shielded, medium shielding, heavy shielding Background subtracting convolutional autoencoder Investigate performance on real gamma-ray spectra

National Nuclear Security Administration