A Machine Learning Approach to Identifying Shielded Radioisotopes in Gamma-Ray Spectra
Mark Kamuda, Advisor: Professor Kathryn Huff
University of Illinois at Urbana-Champaign
CVT Workshop, October 2018

Goals and Objectives
- Main goal: Develop NaI-based radioisotope identification algorithms that can identify sources in unknown shielding configurations, radiation background fields, and detector calibrations

Introduction
- Machine learning and pattern recognition algorithms might be able to incorporate “intangibles based on experience” (Rawool-Sullivan et al., 2010)
- For low-resolution detectors it may be more beneficial to use algorithms that leverage more abstract features of the spectra, such as the shape of overlapping peaks and the Compton continuum.
- Dense neural networks (DNNs) do not assume nearby channels are related, while convolution neural networks (CNNs) do assume local channels are related.
- Because of this, CNNs may operate better than DNNs for automated gamma-ray spectroscopy.
- Dimension reduction techniques such as principle component analysis (PCA) prevents model overfitting by limiting free parameters

Methodology
- Gamma-ray spectrum templates were simulated using GADRAS
 - 29 isotopes based on the ANSI Standard N42.34-2006
 - Spectra were simulated with linear calibration shifts within ±15 channels for a 661 keV photopeak
 - Shielding materials and thicknesses included are listed below
 - Materials correspond to 20%, 40%, and 60% attenuation for a 662 keV photopeak
- Templates were then used to train a classification DNN, PCA->DNN, and CNN

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>2.3 4.1 7.2</td>
</tr>
<tr>
<td>Iron</td>
<td>0.87 1.6 2.8</td>
</tr>
<tr>
<td>Lead</td>
<td>0.42 0.76 1.3</td>
</tr>
</tbody>
</table>

Results
- Weighted F1 scores were compared for simulated spectra
 - F1 score conveys accuracy (1 = perfect, 0 = worst)
 - Spectra were simulated with
 - A different background distribution than the one used in training
 - No calibration shift
 - 0.76 cm lead shielding, where indicated
 - All isotopes in training library

Discussion
- The CNN consistently outperformed both DNNs on simulated shielded spectra (Figs 1-5).
- The DNN and PCA->DNN both generally performed worse with increased integration time
- Between a signal to background ratio of 1.5 and 2.0 performance plateaus

Conclusion
- The CNN’s performance was most promising, consistent with previous findings (Kamuda, Zhao, Huff, 2018)
- Future work
 - Investigate different output structures
 - Unshielded & lightly shielded, medium shielding, heavy shielding
 - Explore unsupervised feature extraction
 - Background subtracting convolutional autoencoder
 - Investigate performance on real gamma-ray spectra

This work was funded by the Consortium for Verification Technology under Department of Energy National Nuclear Security Administration award number DE-NA0002534. Additionally, the authors are grateful to Dr. Clair Sullivan who was instrumental in the early stages of this work.