Fuel Cycle Performance of Fast Spectrum Molten Salt Reactor Designs

Andrei Rykhlevskii – The University of Illinois at Urbana-Champaign

Introduction

Fast spectrum molten salt reactor (MSR) designs with liquid fuel have following advantages:

- High coolant temperature (650–750°C) \rightarrow potential high thermal efficiency, process heat for chemical industry
- Strong negative temperature feedback of liquid fuel
- Passive safety \rightarrow fuel drains into tanks in emergency
- On-line (continuous) fuel reprocessing potential
- Practical closed nuclear fuel cycle implementation

Challenge: commonly available reactor physics codes cannot simulate continuous fuel reprocessing.

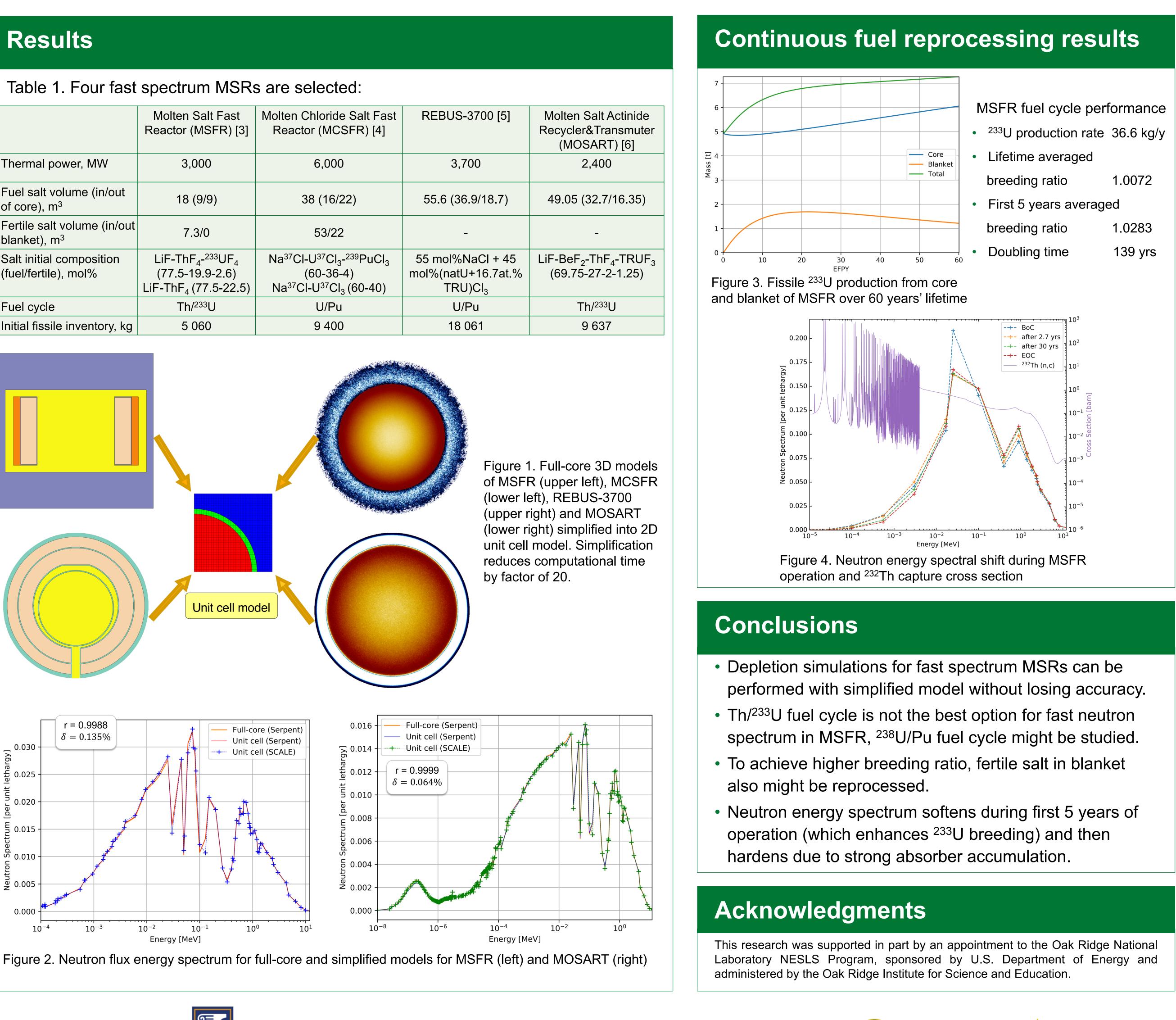
Objectives

- 1. Develop high-fidelity 3D models of 4 different fast MSRs using Monte Carlo code SERPENT2 [1]
- 2. Create and verify simplified 2D models for SCALE [2]
- 3. Perform depletion simulation with continuous fuel reprocessing to compare fuel cycle performance

Methods

Recently developed TRITON continuous reprocessing module performs depletion solve (Bateman equation) with continuous reprocessing capability.

Simplified geometry verified against full-core model by computing correlation factor for neutron energy spectra:


 $r = \frac{\sum_{i=1}^{n} {\binom{full}{i} \Phi - \overline{full} \Phi} {\binom{unit}{i} \Phi - \overline{unit} \Phi}}{\sqrt{\sum_{i=1}^{n} {\binom{full}{i} \Phi - \overline{full} \Phi}}^2 {\binom{unit}{i} \Phi - \overline{unit} \Phi}^2}}$

Mentor: Benjamin R. Betzler With: Jin Whan Bae, Kathryn D. Huff Program: NESLS Reactor and Nuclear Systems Division

Table 1. Four fast spectrum MSRs are selected:

	Molten Salt Fast Reactor (MSFR) [3]	Molten Chloride Salt Fast Reactor (MCSFR) [4]	REBUS-3700 [5]	M Re
Thermal power, MW	3,000	6,000	3,700	
⁻ uel salt volume (in/out of core), m ³	18 (9/9)	38 (16/22)	55.6 (36.9/18.7)	4
⁼ ertile salt volume (in/out planket), m ³	7.3/0	53/22	-	
Salt initial composition (fuel/fertile), mol%	LiF-ThF ₄ - ²³³ UF ₄ (77.5-19.9-2.6) LiF-ThF ₄ (77.5-22.5)	Na ³⁷ CI-U ³⁷ CI ₃ - ²³⁹ PuCI ₃ (60-36-4) Na ³⁷ CI-U ³⁷ CI ₃ (60-40)	55 mol%NaCl + 45 mol%(natU+16.7at.% TRU)Cl ₃	LiF (
-uel cycle	Th/ ²³³ U	U/Pu	U/Pu	
nitial fissile inventory, kg	5 060	9 400	18 061	

