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Goals and Objectives
● Main goal: develop a radioisotope identification algorithm 

that can operate in a wide range of radiation background 
fields and detector calibrations.

● Compare the performance of fully connected neural 
networks (FC-NNs) and convolutional neural networks 
(CNNs).

Methodology
● Gamma-ray spectra dataset is simulated using GADRAS
○ 29 isotopes based on the ANSI Standard N42.34-2006
○ 100,000 spectra uniformly sampled over all 1-simplicies
○ Each spectrum has a calibration shift between ± 50 

channels for a 661 keV photopeak
○ Each spectrum has random contributions from background 

uranium, thorium, and potassium
● Dataset is used to train a mixture density bagged FC-NN and  

a CNN to calculate mixing coefficients for each isotope in a 
given spectrum
○ An isotope mixing coefficient represents the percent of 

counts in a spectrum attributable to that isotope 

Introduction
● An algorithm that can quickly determine the relative activities 

of isotopes in low-resolution gamma spectra is needed. 
● Machine learning and pattern recognition algorithms might 

be able to incorporate “intangibles based on experience” 
(Rawool-Sullivan et al., 2010).

● For low-resolution detectors it may be more beneficial to use 
algorithms that leverage more abstract features of the 
spectra, such as the shape of overlapping peaks and the 
Compton continuum. 

● FC-NNs do not assume nearby channels are related, while 
CNNs do assume local channels are related
○ Because of this, CNNs may operate better than FC-NNs for 

automated gamma-ray spectroscopy.

Results
● For each isotope, 100 spectra are simulated for different 

source-to-total count ratios
● Each spectrum has:
○ Random background isotope contributions 
○ Random calibration shift

● Predicted mixing coefficient are compared using box-and-whisker 
plots
○ An ideal 45° dotted line included in each plot

Discussion
● Both the FC-NN and CNN operated well despite changes in calibration 

and background radiation field
● The CNN displayed a similar accuracy and a lower variance for each 

dataset
● As seen in Figure 3,
○ The CNN generalized better to spectra with a smaller number of 

total counts.

Conclusion
● The CNN performed better overall
○ In general, the CNN was similarly accurate and had less varied 

outputs when compared to the bagged FC-NN. 
○ Adding additional detector models to the training set may improve 

the performance of CNNs.
● Future work
○ Incorporate shielding effects
○ Investigate FC-NNs and CNNs for uranium enrichment 

measurements  

Figure 1. Predicted mixing 
coefficient for the FC-NN 
(blue) and CNN (red), 
averaged over all library 
isotopes. The total counts 

in each spectrum is 103. 
Each spectrum is 
simulated using the same 
template as the training 
dataset. 

Figure 3. Distribution of the error from the FC-NN (blue) and CNN (red) for 
each isotope. Each isotope in this dataset was simulated 100 times. Each 

spectrum in (a) contains 103 counts and each spectrum in (b) contains 105 
counts. For each spectrum, 90% of the total counts are from the source and 
10% are randomly generated background.

Figure 2. Predicted mixing 
coefficient for the FC-NN 
(blue) and CNN (red), 
averaged over all library 
isotopes. The total counts 

in each spectrum is 103. 
Each spectrum is 
generated using 
templates with a wider 
FWHM than the training 
dataset.
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