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Current fuel cycle simulators
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Figure 1: User defined Deployment Scheme 

Figure 2: Demand Driven Deployment Scheme 

Gap in capability: User must define when facilities are deployed

Bridging the gap: Developing prediction algorithms for Cyclus [2]  
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CYCLUS
v Agent-based framework [2]
v Compatible with plug-in libraries 
v Gives users ability to customize agents
v Agent types: facilities, institutions and regions 
v Discrete time steps 

Background

Figure 3: Cyclus has a modular architecture [3]
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Demand-Driven Deployment Algorithms
v Objective function
v Examples:

Motivation
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Figure 5: Demand Driven Deployment Scheme
with objective functions defined 

Minimize amount of 
natural uranium mined

Minimize amount of 
waste generated
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Numerical Experiments / Tests 

v Verification and maintenance of code is crucial for 
reliability of algorithms [8]

v Best practice: writing tests 

Motivation

Objective of this presentation 
Description of tests for the non-optimizing

type prediction algorithm
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Types of Prediction Algorithms

1) Non-optimizing algorithm
2) Deterministic optimization algorithm
3) Stochastic optimization algorithm [7]

Each method 
v Create a supply chain
v Demand for each commodity is evaluated 
v Algorithm will make a prediction about future demand 
v Deploy/decommission facilities 

Source Enrichment Reactor Waste 
Storage

Prediction Algorithms

Figure 6: Prediction Algorithm creates a supply chain
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Non-Optimizing Method 

v Most basic prediction algorithm
v Predicts future deployment of facilities based on historical 

data 
v At each time step, the difference in supply and demand is 

calculated 
v If the difference is larger than the capacity of 1 facility, more 

facilities will be deployed/decommissioned 
v Autoregressive Model 

v A model that is dependent only on previous outputs of the system 
[7]

Prediction Algorithms
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Tests for Variation of Input Parameters

User-defined Input Parameters
1) Initial demand value
2) Number of initial facilities already present (initial supply) 
3) Growth rate of initial demand

v Growth Rate: 

Numerical Experiments

Objective of varying input parameters
Ensure algorithm will deploy/decommission 
facilities correctly for different test scenarios 
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Test Scenarios & Analytical Solutions

1 Source
Facility 

Output: 
1kg Fuel

Numerical Experiments

Table 2a: Test A1 Scenario Input Parameters 

Table 3a: Test A2 Scenario Input Parameters 

Table 4a: Test A3 Scenario Input Parameters 

Table 1: Test Scenario Parameters

Table 2b: Test A1 Analytical Solution

Table 3b: Test A2 Analytical Solution

Table 4b: Test A3 Analytical Solution

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------
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Tests Scenarios & Analytical Solutions
Numerical Experiments

1 Source
Facility 

1 Reactor
Facility 

Output: 
1MW Power

Output: 
1kg Fuel

Table 5a: Test A4 Scenario Input Parameters 

Table 6a: Test A5 Scenario Input Parameters 

Table 5b: Test A4 Analytical Solution

Table 6b: Test A5 Analytical Solution
-------------------------------------------------------------------------------------------
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Challenges

Downsides of agent-based fuel cycle simulator
v Difficulties in implementation of generality in code 

Iterative Feedback 
v Striving for targeted development of prediction algorithms

Numerical Experiments

University South 
Carolina: 

Prediction 
Algorithm 

Development 
Team

University of 
Illinois Urbana-

Champaign:
Test 

Development 
Team
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Conclusion

v Demand driven deployment algorithms are important to meet 
objective functions at different phases of the fuel cycle 

v Numerical experiments are being implemented to test the algorithms 
to ensure the reliability of the code

v Challenges of developing prediction algorithms for an agent based 
nuclear fuel cycle simulator due to the goal for their use in a general 
supply chains 



14/16

Next Steps 

v Idaho National Lab conducted nuclear fuel cycle
evaluation and screening report and reported 40 
promising fuel cycles

v Use Prediction Algorithms to evaluate the transition from 
current fuel cycle to the promising fuel cycle. To get
information about: 
v Resource demand 
v Facility deployment and decommissioning 
v Time span 
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Thank You 

Any Questions?
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Source, Reactor and Sink Parameters
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Deterministic & Stochastic  
Optimization Method
v Deterministic Optimization 

v Uses known shutdown times and power produced per facility to
determine global solutions

v Stochastic Optimization 
v Stochastic prediction with standard deviations derived from recent 

historical data to generate high, mean and low curves into the future 
v Runs sub-simulations into the future to attempt to minimize the 

difference in produced quantity to demand [4]


