Numerical Experiments for Testing Demand-Driven Deployment Algorithms

American Nuclear Society Student Conference 2018

Gwendolyn Chee, Jin Whan Bae & Kathryn D. Huff University of Illinois at Urbana-Champaign

April 7, 2018

Outline

- 1) Background
 - Gap in capability of current fuel cycle simulators Agent based fuel cycle simulator: Cyclus
- 2) Motivation
 - Demand-driven deployment algorithms Impact of numerical experiments
- Prediction Algorithms
 Types of prediction algorithms
 Non-optimizing method
- 4) Numerical Experiments
 - Numerical tests for non-optimizing method

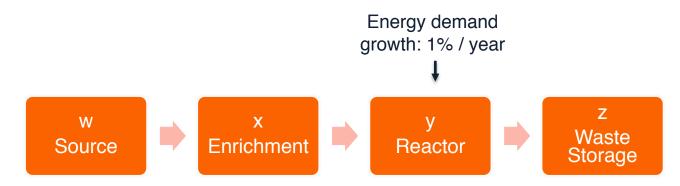
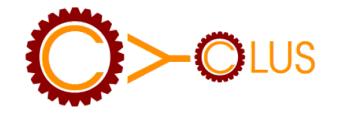
Background

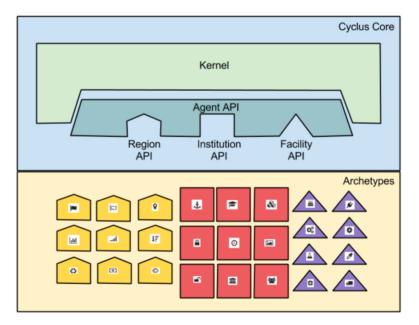
Current fuel cycle simulators

Gap in capability: User must define when facilities are deployed

Figure 1: User defined Deployment Scheme

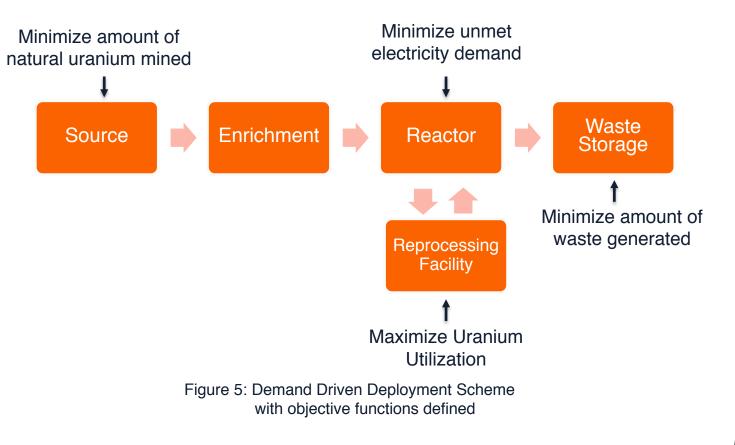
Bridging the gap: Developing prediction algorithms for Cyclus [2]


Figure 2: Demand Driven Deployment Scheme

Background

CYCLUS


- Agent-based framework [2]
- Compatible with plug-in libraries
- Gives users ability to customize agents
- ✤ Agent types: facilities, institutions and regions
- Discrete time steps

Motivation

Demand-Driven Deployment Algorithms

- Objective function
- Examples:

Motivation

Numerical Experiments / Tests

- Verification and maintenance of code is crucial for reliability of algorithms [8]
- Best practice: writing tests

Objective of this presentation

Description of tests for the non-optimizing type prediction algorithm

Types of Prediction Algorithms

- 1) Non-optimizing algorithm
- 2) Deterministic optimization algorithm
- 3) Stochastic optimization algorithm [7]

Each method

- Create a supply chain
- Demand for each commodity is evaluated
- Algorithm will make a prediction about future demand
- Deploy/decommission facilities

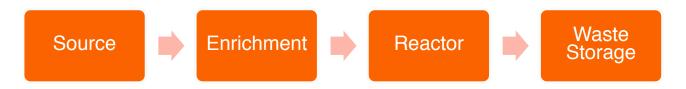


Figure 6: Prediction Algorithm creates a supply chain

Non-Optimizing Method

- Most basic prediction algorithm
- Predicts future deployment of facilities based on historical data
 - At each time step, the difference in supply and demand is calculated
 - If the difference is larger than the capacity of 1 facility, more facilities will be deployed/decommissioned
- Autoregressive Model
 - A model that is dependent only on previous outputs of the system
 [7]

Tests for Variation of Input Parameters

User-defined Input Parameters

- 1) Initial demand value
- 2) Number of initial facilities already present (initial supply)
- 3) Growth rate of initial demand
 - ✤ Growth Rate:

$$D_f(timestep) = D_i(1+g)^{(\frac{timestep}{12})}$$

Objective of varying input parameters

Ensure algorithm will deploy/decommission facilities correctly for different test scenarios

Test Scenarios & Analytical Solutions

Table 2a: Test A1 Scenario Input Parameters

Source Parameter	Value	Units
Initial demand	1	kg
Initial facilities	0	#
Growth Rate	0	

Table 3a: Test A2 Scenario Input Parameters

Source Parameter	Value	Units
Initial demand	2	kg
Initial facilities	1	#
Growth Rate	0	

Table 4a: Test A3 Scenario Input Parameters

Source Parameter	Value	Units
Initial demand	1	kg
Initial facilities	0	#
Growth Rate	1	

Table 1: Test Scenario Parameters

Test Scenario Parameters	Value	Units
Duration	15	timesteps
Timestep	1	month
Start Month	1	month
Start Year	2000	year

Table 2b: Test A1 Analytical Solution

Time Step	No. of Source Facilities Deployed
1	1
2 to 15	0

Table 3b: Test A2 Analytical Solution

Time Step	No. of Source Facilities Deployed
1	1
2 to 15	0

Table 4b: Test A3 Analytical Solution

Time Step	No. of Source Facilities Deployed
1	2
2 to 12	0
13	1
14 to 15	0

Tests Scenarios & Analytical Solutions

Table 5a: Test A4 Scenario Input Parameters

Source Parameter	Value	Units
Initial demand	-	kg
Initial facilities	-	#
Growth Rate	-	
	37.1	TT A ·
Reactor Parameter	Value	Units
Initial demand	Value 1	Units MW
	Value 1 0	0

Table 5b: Test A4 Analytical Solution

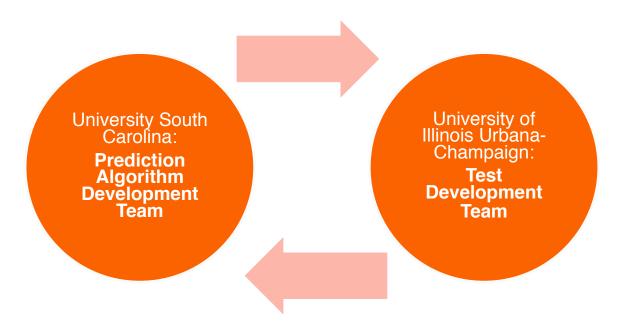
Time Step	No. of Source Facilities Deployed	No. of Reactor Facilities Deployed
1	1	1
2 to 15	0	0

Table 6a: Test A5 Scenario Input Parameters

Source Parameter	Value	Units
Initial demand	-	kg
Initial facilities	-	#
Growth Rate	-	
Reactor Parameter	Value	Units
Reactor Parameter Initial demand	Value 2	Units MW
		0

Table 6b: Test A5 Analytical Solution

Time Step	No. of Source Facilities Deployed	No. of Reactor Facilities Deployed
1	1	1
2 to 15	0	0


Challenges

Downsides of agent-based fuel cycle simulator

Difficulties in implementation of generality in code

Iterative Feedback

Striving for targeted development of prediction algorithms

Conclusion

- Demand driven deployment algorithms are important to meet objective functions at different phases of the fuel cycle
- Numerical experiments are being implemented to test the algorithms to ensure the reliability of the code
- Challenges of developing prediction algorithms for an agent based nuclear fuel cycle simulator due to the goal for their use in a general supply chains

Next Steps

- Idaho National Lab conducted nuclear fuel cycle evaluation and screening report and reported 40 promising fuel cycles
- Use Prediction Algorithms to evaluate the transition from current fuel cycle to the promising fuel cycle. To get information about:
 - Resource demand
 - Facility deployment and decommissioning
 - Time span

Acknowledgements

This work is supported by U.S. Department of Energy, Nuclear Energy University Program, under contract # NEUP- FY16-10512.

References

- [1]: J. W. BAE, G. CHEE, and K. D. HUFF, "Numerical Experiments for Verifying Demand Driven Deployment Algorithms," Graduate Report, University of Illinois at Urbana- Champaign, Urbana, IL (Jan. 2018).
- [2]: R. W. CARLSEN, M. GIDDEN, K. HUFF, A. C. OPO- TOWSKY, O. RAKHIMOV, A. M. SCOPATZ, Z. WELCH, and P. WILSON, "Cyclus v1.5.3," Figshare (Jun. 2014), http://dx.doi.org/10.6084/m9.figshare.1041745.
- [3]: K. D. HUFF, M. J. GIDDEN, R. W. CARLSEN, R. R. FLANAGAN, M. B. MCGARRY, A. C. OPOTOWSKY, E. A. SCHNEIDER, A. M. SCOPATZ, and P. P. H. WILSON, "Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework," Advances in Engineering Software, 94, 46–59 (Apr. 2016).
- [4]: A.M.SCOPATZ and K.D.HUFF, "Technical Narrative for Demand-Driven Cycamore Archetypes," Technical Report, University of South Carolina and University of Illinois at Urbana-Champaign (2016).
- [5]: G. WILSON, D. A. ARULIAH, C. T. BROWN, N. P.CHUE HONG, M. DAVIS, R. T. GUY, S. H. D. HAD- DOCK, K. D. HUFF, I. M. MITCHELL, M. D. PLUMB-LEY, B. WAUGH, E. P. WHITE, and P. WILSON, "Best Practices for Scientific Computing," PLoS Biol, 12, 1, e1001745 (Jan. 2014).

Thank You

Any Questions?

Source, Reactor and Sink Parameters

Source Parameters	Value	Units
Throughput	1	kg
Output Commodity	fuel	kg
Reactor Parameters	Value	Units
Cycle Time	1	timesteps
Refuel Time	0	timesteps
Lifetime	1	timesteps
Power Capacity	1	MWe
Assembly Size	1	kg
# assemblies per core	1	
# assemblies per batch	1	
Input Commodity	fuel	kg
Output Commodity	power	MW
Sink Parameters	Value	Units
Throughput	1	kg
Input Commodity	spent uox	kg

Deterministic & Stochastic Optimization Method

- Deterministic Optimization
 - Uses known shutdown times and power produced per facility to determine global solutions
- Stochastic Optimization
 - Stochastic prediction with standard deviations derived from recent historical data to generate high, mean and low curves into the future
 - Runs sub-simulations into the future to attempt to minimize the difference in produced quantity to demand [4]