Synergistic Spent Nuclear Fuel Dynamics Within the European Union

French Transition into SFRs

Jin Whan Bae, Kathryn Huff, Clifford Singer Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

October 31, 2017

ILLINOIS

Motivation Method and Specfications Future Projections

Outline

1 Background

Motivation Method and Specfications Future Projections

2 Scenario Specification

Assumptions Simulation Parameters

3 Results

EU Nuclear Operation until 2050 French Transition Scenario 2160

4 Conclusion

Motivation Method and Specfications Future Projections

France

- Preparation for a transition from Light Water Reactors (LWRs) to Sodium-Cooled Fast Reactors (SFRs) [1]
- Additional LWR construction to supply Plutonium for SFR transition
- Most EU nations do not have a repository for Used Nuclear Fuel (UNF)

Motivation Method and Specfications Future Projections

By taking UNF from other EU nations, France can transition into a fully SFR fleet (66 GWe capacity) without additional construction of LWRs.

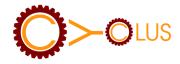
- Transition to 110 Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID)-type SFRs (Capacity 66 GWe)
- Collaborative approach benefits both sides

Motivation Method and Specfications Future Projections

Past research is mostly on:

- French transition to SFRs after additional construction of European Pressurized Reactors (EPRs) [3, 12, 5]
- partitioning and transmutation in a regional (European) context [4]

There is little research on managing UNF in a cooperative manner in advanced fuel cycles.


Motivation Method and Specfications Future Projections

 CYCLUS is the next generation agent-based nuclear [8] fuel cycle simulator.

- Flexibility to users and developers through a dynamic resource exchange solver
- user-developed agent framework
- low barrier to entry for new users and developers
- expanding ecosystem

Motivation Method and Specfications Future Projections

Deployment Timeline for EU historical operation

Historical operation and predictions are made using references such as International Atomic Energy Agency (IAEA) Power Reactor Information System (PRIS) [10], World Nuclear Association [2] and papers on the future of nuclear power [11, 6].

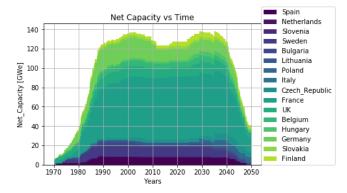
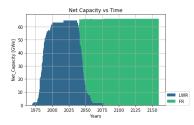


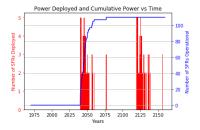
Figure 1: Timeseries of installed nuclear capacity in European Union (EU).

Motivation Method and Specfications Future Projections

Simulated European Deployment

Nation	Growth Trajectory	Specific Plan
UK	Aggressive Growth	13 units (17,900 MWe) by 2030.
Poland	Aggressive Growth	Additional 6,000 MWe by 2035.
Hungary	Aggressive Growth	Additional 2,400 MWe by 2025.
Finland	Modest Growth	Additional 2,920 MWe by 2024.
Slovakia	Modest Growth	Additional 942 MWe by 2025.
Bulgaria	Modest Growth	Additional 1,000 MWe by 2035.
Romania	Modest Growth	Additional 1,440 MWe by 2020.
Czech Rep.	Modest Growth	Additional 2,400 MWe by 2035.
France	Modest Reduction	No expansion or early shutdown.
Slovenia	Modest Reduction	No expansion or early shutdown.
Netherlands	Modest Reduction	No expansion or early shutdown.
Lithuania	Modest Reduction	No expansion or early shutdown.
Spain	Modest Reduction	No expansion or early shutdown.
Italy	Modest Reduction	No expansion or early shutdown.
Belgium	Aggressive Reduction	All shut down 2025.
Sweden	Aggressive Reduction	All shut down 2050.
Germany	Aggressive Reduction	All shut down by 2022.


Table 1: Future Nuclear Programs of EU Nations [2]


Motivation Method and Specfications Future Projections

Deployment Timeline for French Transition

110 SFRs (66 GWe) are deployed by 2076.

Figure 2: French Transition into an SFR Fleet

Figure 3: Deployment of French SFRs and total installed capacity

Motivation Method and Specfications Future Projections

Method

 $\rm CYCLUS$ simulation of EU nations (1970 - 2160) with French Transition into an SFR fleet from 2040.

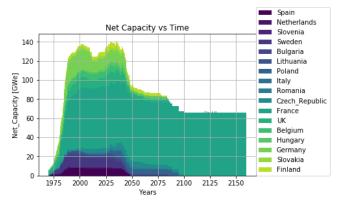


Figure 4: Total Deployment Scheme of EU nations

Assumptions Simulation Parameters

Outline

Background

Motivation Method and Specfications Future Projections

2 Scenario Specification

Assumptions Simulation Parameters

3 Results

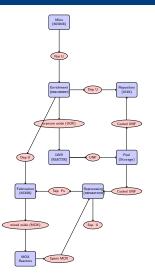
EU Nuclear Operation until 2050 French Transition Scenario 2160

4 Conclusion

Assumptions Simulation Parameters

- Fuel cycle facility parameters (throughput, availability)
- Compositions of fresh and spent fuel
- Material flow

- SFR technology available for deployment in 2040.
- Reactor construction is always completed on time.
- Separated uranium is unused and stockpiled.
- LWRs have a lifetime of 60 years, unless shut down prematurely.
- SFRs have a lifetime of 80 years.


For the French Transition:

- Reprocessing and fabrication begins 2020
- French nuclear capacity remains constant at 66,000 MWe

Assumptions Simulation Parameters

Material Flow

Figure 5: Model Fuel Cycle with MOX Reprocessing

Assumptions Simulation Parameters

EU Nuclear Opearations ~2050

Deployment and Reactor data from IAEA PRIS. Reprocessing plant and fabrication plant modeled after French La Hague and MELOX site [13, 9].

Parameter	Value	
Simulation Start Year	1970	
Simulation End Year	2160	
Reprocessing Capacity	91.6 [MTHM UNF per month] [13]	
Reprocessing Efficiency	99.8 [%]	
Reprocessing Streams	Plutonium and Uranium	
MOX Fabrication	9% Reprocessed Pu $+$ 91% Depleted U	
MOX Fabrication Throughput	16.25 [MTHM MOX per month] [9]	
MOX Fuel Reprocessing Stage	Used MOX is not reprocessed.	
Reprocessed Uranium Usage	None. Stockpile reprocessed U	

Table 2: Parameter for Historical Operation of EU Case (~2040)

Assumptions Simulation Parameters

French Transition to SFRs ~2160

Parameter	Value	
SFR Available Year	2040	
Reprocessing and Fabrication Begins	2020	
Separation Efficiency	99.8 [%]	
Reprocessing Streams	plutonium and uranium	
ASTRID fuel Fabrication	22% Reprocessed Pu $+$ 78% Depleted U	
ASTRID Fuel Reprocessing Stage	Used fuel gets reprocessed infinitely.	
Reprocessed Uranium Usage	None. Stockpile reprocessed U.	

Table 3: Parameter for French Transition to SFR

Assumptions Simulation Parameters

Reactor Parameters - LWRs

Number of assemblies are linearly adjusted from a model 1,000 MWe reactor.

Parameter	Units	PWR [14]	BWR [7]
cycle time	months	18	
refueling outage	months	2	
Fuel mass per assembly	kg	446	180
Burnup	GWd/MTHM	51	
Num. of assem. per core	(for 1,000 MWe)	193	764
Num. of assem. per batch	(for 1,000 MWe)	62	254
Fuel		UOX, MOX	UOX

Table 4: LWR Parameters

Assumptions Simulation Parameters

I

Reactor Parameters - ASTRID-type SFRs

Parameter	Value
SFR Cycle Time	12 months
SFR Refueling Outage	2 months
Fuel Mass per Batch	5,568 kg
Initial Pu Loading	4.9 Tons
Breeding Ratio	1.08
Batch per Core	4
Power Output	600 MWe
lifetime	80 years
Fuel	MOX (78% Tails, 22% Separated Pu)

Table 5: SFR ASTRID Parameters [15]

EU Nuclear Operation until 2050 French Transition Scenario 2160

Outline

Background

Motivation Method and Specfications Future Projections

2 Scenario Specification

Assumptions Simulation Parameters

3 Results

EU Nuclear Operation until 2050 French Transition Scenario 2160

4 Conclusion

EU Nuclear Operation until 2050 French Transition Scenario 2160

I

Historical Operation of EU Reactors

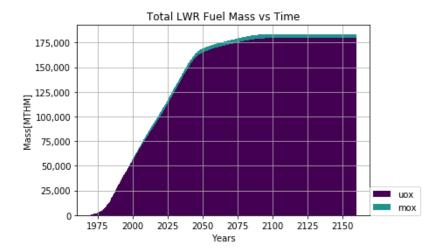

Category	Value	Unit	Specifics
Total UOX Usage	176,600	MTHM	
Total MOX Usage	6,953	MTHM	
Total Used UOX Stored	110,013	MTHM	UNF that is not reprocessed
Total Used UOX Stored (France)	12,943	MTHM	UNF that is not reprocessed
Total Tails	1,059,210	MTHM	
Total Natural U Used	1,235,810	MTHM	

Table 6: Simulation Results for Historical Nuclear Operation of EU Nations

EU Nuclear Operation until 2050 French Transition Scenario 2160

Tails and UNF Inventory

Figure 6: Timeseries of Total Fuel Usage in EU.

EU Nuclear Operation until 2050 French Transition Scenario 2160



Figure 7: Timeseries of Used Nuclear Fuel in EU.

EU Nuclear Operation until 2050 French Transition Scenario 2160

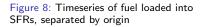
SFR Deployment with Legacy UNF

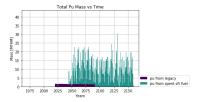
- Reprocessing UNF from all EU nations can start approx. 202 SFRs. (UOX UNF has about 0.9% pu)
- $\frac{Pu \ from \ legacy \ UNF}{4.9} \approx 202$
- Initial Pu loading of 4.9 tons for ASTRID-type SFR [15].
- Two generations of 66GWe SFRs = 220 SFRs

EU Nuclear Operation until 2050 French Transition Scenario 2160

Frech Transition Results

Category	Unit	Value
Total MOX used	MTHM	63,820
Total SFRs Deployed		220
Total Plutonium Reprocessed	MTHM	15,099
Total ASTRID fuel from UOX Waste	MTHM	2,923
Total ASTRID fuel from MOX Waste	MTHM	60,535
Total Tails used	MTHM	49,779
Total legacy UNF reprocessed	MTHM	54,111
Total Reprocessed Uranium Stockpile	MTHM	183,740
Total Raffinate	MTHM	33,806


Table 7: SFR Simulation Results


EU Nuclear Operation until 2050 French Transition Scenario 2160

I

Material Flow in French Transition Scenario

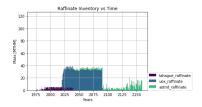


Figure 9: Separated plutonium discharge from Reprocessing Plant

EU Nuclear Operation until 2050 French Transition Scenario 2160

I

Material Flow in French Transition Scenario

Figure 10: Timeseries of raffinate discharge from reprocessing plants

Figure 11: Cumulative raffinate inventory separated by origin

Outline

Background

Motivation Method and Specfications Future Projections

2 Scenario Specification

Assumptions Simulation Parameters

3 Results

EU Nuclear Operation until 2050 French Transition Scenario 2160

4 Conclusion

France can transition into a fully SFR fleet with installed capacity of 66GWe by 2076.

- Reprocessing Capacity : $\approx 140 \frac{MTHM}{month}$
- Fabrication Throughput: $pprox 150 rac{MTHM}{month}$

Discussion

Total Legacy UNF reprocessed: **54,111 MTHM** France + Spain + Italy + Belgium + Germany = 53,809 MTHM

Nation	Growth Trajectory	UNF in 2050 [MTHM]
UK	Aggressive Growth	53,188
Poland	Aggressive Growth	6,714
Hungary	Aggressive Growth	4,768
Finland	Modest Growth	7,528
Slovakia	Modest Growth	3,446
Bulgaria	Modest Growth	3,930
Czech Rep.	Modest Growth	7,583
Slovenia	Modest Reduction	765
Netherlands	Modest Reduction	539
Lithuania	Modest Reduction	2,644
France	Modest Reduction	12,943
Spain	Modest Reduction	9,771
Italy	Modest Reduction	583
Belgium	Aggressive Reduction	6,644
Sweden	Aggressive Reduction	16,035
Germany	Aggressive Reduction	23,868

Table 8: Growth Trajectory and UNF Inventory of EU Nations.

Discussion

- Most EU nations do not have an operating repository or management plan
- Some nations need a repository for complete decommission & nuclear phase-out
- Strong incentive for collaboration

Acknowledgments

- NEUP Grant: PI Kathryn Huff
- Advanced Reactors and Fuel Cycles (ARFC) Research Group
- Program in Arms Control & Domestic and International Security (ACDIS) Group

U.S. Department of Energy

References I

[1] Reports of the CNE2.

Technical report, Commission Nationae D'Evaluation, June 2015.

[2] W. N. Association.

Nuclear Power in the European Union - World Nuclear Association, Feb. 2017.

[3] F. Carre and J.-M. Delbecq.

Overview on the French nuclear fuel cycle strategy and transition scenario studies. In *Proceedings of GLOBAL*, Paris, France, 2009.

[4] C. Fazio.

Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase out scenario, Oct. 2013.

- [5] D. Freynet, C. Coquelet-Pascal, R. Eschbach, G. Krivtchik, and E. Merle-Lucotte. Multiobjective optimization for nuclear fleet evolution scenarios using COSI. *EPJ Nuclear Sciences & Technologies*, 2:9, 2016.
- [6] M. T. Hatch.

Politics and Nuclear Power: Energy Policy in Western Europe. University Press of Kentucky, Jan. 2015. Google-Books-ID: TrwfBgAAQBAJ.

References II

[7] D. Hinds and C. Maslak.

Next-generation nuclear energy: The ESBWR. *Nuclear News*, 49(1):35–40, 2006.

 [8] K. D. Huff, M. J. Gidden, R. W. Carlsen, R. R. Flanagan, M. B. McGarry, A. C. Opotowsky, E. A. Schneider, A. M. Scopatz, and P. P. H. Wilson.
Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework. *Advances in Engineering Software*, 94:46–59, Apr. 2016.

[9] D. Hugelmann and D. Greneche.

MELOX fuel fabrication plant: operational feedback and future prospects.

In MOX Fuel Cycle Technologies for Medium and Long Term Deployment (Proc. Symp. Vienna, 1999), C&S Papers Series No, volume 3, pages 102–108, 1999.

[10] IAEA.

PRIS - Home, Sept. 2017.

[11] P. L. Joskow and J. E. Parsons.

The Future of Nuclear Power After Fukushima.

Working Paper, MIT CEEPR, Feb. 2012.

References III

[12] G. Martin and C. Coquelet-Pascal.

Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel.

Annals of Nuclear Energy, 103:356-362, May 2017.

[13] M. Schneider and Y. Marignac.

Spent nuclear fuel reprocessing in France. 2008.

[14] B. Sutharshan, M. Mutyala, R. P. Vijuk, and A. Mishra. The AP1000tm Reactor: Passive Safety and Modular Design. *Energy Proceedia*, 7:293–302, Jan. 2011.

[15] F. Varaine, M.-S. Chenaud, P. Marsault, B. Bernardin, A. Conti, P. Sciora, C. Venard, B. Fontaine, L. Martin, and G. Mignot. Pre-conceptual design study of ASTRID core. June 2012.