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Reactor systems potentially meeting the Generation IV goals

Figure 1: Potential Generation IV reactors [1]. 3 / 25
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Why Molten Salt Reactors?

Main advantages of liquid-fueled Molten Salt Reactors (MSRs)[2]

1 High average coolant temperature (600-750◦C) ⇒ high thermal efficiency.

2 May operate with epithermal or fast neutron spectrums.

3 Various fuels can be used (235U, 233U, Thorium, U/Pu).

4 Liquid fuel has strong negative temperature feedback.

5 Liquid fuel drains into tanks in emergency.

6 High fuel utilization ⇒ less nuclear waste generated.

7 Online reprocessing and refueling.

Main advantages of Molten Salt Breeder Reactor (MSBR)[3]

1 Breed fissile 233U from 232Th (breeding ratio 1.06).

2
233U, 235U, or 239Pu for the initial fissile loading.

3 Thorium cycle limits plutonium and minor actinides.

4 Could transmute Light Water Reactor (LWR) spent fuel.
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Molten Salt Reactor Experiment vs Molten Salt Breeder Reactor

Molten Salt Reactor Experiment (MSRE)

1 8 MWth

2 Fuel salt
• 7LiF-BeF2-ZrF4-UF4
• 7LiF-BeF2-ZrF4-UF4-PuF3

3 First use of 233U and mixed U/Pu

4 Single region core

5 Operated: 1965-1969 at ORNL

Molten Salt Breeder Reactor (MSBR) [3]

1 2.25GWth, 1GWe

2 Fuel salt
• 7LiF-BeF2-ThF4-233UF4
• 7LiF-BeF2-ThF4-233UF4-239PuF3

3 Breeding ratio 1.06

4 Single fluid/two-region core design

5 Chemical salt processing plant
5 / 25
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Research objectives

Goals of current study

1 Develop simplified single-cell MSBR model using the continuous-energy
SERPENT 2 Monte Carlo reactor physics software [4].

2 Using the built-in SERPENT 2 depletion capabilities simulate online
reprocessing and refueling regime.

3 Find the equilibrium core composition for the MSBR.

What is next?

1 Depletion simulation using a full-core, 3-D, high-fidelity MSBR model.

2 Additional SERPENT 2 flow control system will evaluate material flows.

3 Optimization of reprocessing parameters and reactor design.

4 Determine and compare major safety characteristics for initial and
equilibrium fuel composition.
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Input data

Table 1: Summary of principal data for MSBR [3]

Figure 2: Plan view of MSBR vessel [3].
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Graphite unit cell geometry

Figure 3: Molten Salt Breeder Reactor Zone I unit cell geometry from the reference [3]
(left) and SERPENT 2 (right).
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Online reprocessing method

• Currently, researchers typically develop custom scripts to simulate online
reprocessing and refueling using stochastic (i.e. MCNP) or deterministic
(i.e. SCALE) codes [5, 6].

Figure 4: Depletion calculation principal scheme [7].

• SERPENT 2 allows the user to define multiple material flows into and out
of the fuel and applies batchwise reprocessing and refueling at each step.
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Online reprocessing method

Figure 5: Protactinium isolation with uranium removal by fluorination [3].

Online reprocessing approach

• Continuously removes all poisons, noble metals, and gases.

• 233Pa is continuously removed from the fuel salt into a decay tank.
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Approximations and assumptions

Model simplifications and assumptions

1 Single cell model of MSBR with periodic boundary conditions.

2 Delayed neutron precursor drift is neglected.

Simulation conditions and nuclear data

1 Tfuel = Tgraphite = 908K.

2 ρfuel=3.33 g/cm3 and ρgraphite=1.843 g/cm3.

3 104 neutrons per cycle for a total of 500 cycles, the first 20 are inactive.

4 ENDF/B-VII cross sections were used [8].
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Infinite multiplication factor for unit cell model

Figure 6: Infinite multiplication factor during a 1200 day
depletion simulation. The confidence interval ±σ is
shaded.

• Strong absorbers
(233Th,234U) accumulating in
the begining of cycle.

• Fissile materials other than
233U are bred into the core
(235U, 239Pu).

• Fresh fuel refill rate was
changed after 400 days of
operation to adjust these
effects.

• The multiplication factor
stabilizes after approximately
950 days.
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Fuel salt composition evolution

Figure 7: Normalized number density of major isotopes
during 1200 day of depletion.

• Number density of 233Pa is
negligible (1016 1/cm3) but
some small amount of it is
produced during the 3-day
reprocessing period.

• Fissile materials other than 233U
are produced in the core (235U,
239Pu).

• 239Pu from initial fissile loading
fully depleted after 250 days but
then slowly produced from 238U.
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Rate of change 232Th and 233U in the core

Figure 8: Rate of change of major isotopes during online
reprocessing.

• To keep the reactor critical,
a higher 233U flow rate from
the protactinium decay tank
is required for the first 400
days.

• The 232Th loss rate slightly
decreases over 4 years of
operation due to fissile
material accumulation.
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Rate of change 233Pa, 233U from the protactinium decay tank

Figure 9: Isotopic rate of change for the protactinium decay tank
during MSBR online reprocessing.

• Protactinium
accumulated for
approximately 200 days.

• Fresh fissile 233U fuel
flow established after
200 days.
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Neutron spectrum

Figure 10: Neutron spectrum for initial and equilibrium composition (normalized per
lethargy).

• MSBR has a epithermal spectrum which is perfect for thorium fuel cycle.
• Spectrum becomes harder due to fission product accumulation. 18 / 25
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Conclusions

This study outcomes

• MSBR unit cell online reprocessing simulation was performed using the
SERPENT 2 Monte Carlo code to find equilibrium fuel composition.

• Infinite multiplication factor slowly decreases and reaches the equilibrium
state after 950 days of operation.

• To achieve equilibrium state and maintain criticality, the material flow rate
should be adjusted, ideally, for each 3-day step.

• The neutron energy spectrum is harder for the equilibrium state because a
significant amount of fission products were accumulated in the MSBR core.

20 / 25



Background
Methodology

Results and discussion
Conclusions

Future research

Future research effort

1 Depletion simulation using a full-core, 3-D, high-fidelity MSBR model.

2 Additional SERPENT 2 flow control system development to simulate
adjusting material flows depending upon the instantaneous reactivity.

3 Reprocessing parameters (e.g. time step, feeding rate, protactinium removal
rate) optimization will be performed to achieve maximum fuel utilization,
breeding ratio or safety characteristics.

4 Temperature coefficients of reactivity, rod worth, power density will be
computed for initial and equlibrium fuel composition to determine influence
of fuel depletion on MSBR safety.

5 LWR fuel transmutation study.
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Generation IV Reactors

Goals for Generation IV Nuclear Energy Systems [1]

1 Sustainability

2 Economics

3 Safety and Reliability

4 Proliferation Resistance and Physical Protection

Figure 11: A Technology Roadmap for Gen IV Nuclear Energy Systems [1].
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MSBR plain view
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