
ARFC

Numerical

Experiments for

Verifying Demand

Driven Deployment

Algorithms

Authors
Jin Whan BAE
Gwendolyn CHEE

Principal Investigator
Kathryn D. HUFF

UIUC-ARFC-2018-01

April 21, 2018

ADVANCED REACTORS AND FUEL CYCLES
DEPT. OF NUCLEAR, PLASMA, & RADIOLOGICAL ENGINEERING

UNIVERSITY OF ILLIOIS AT URBANA-CHAMPAIGN

This research was performed using funding received from the DOE Office of
Nuclear Energy’s Nuclear Energy University Program under award number

16-10512.



Numerical Experiments for Verifying Demand

Driven Deployment Algorithms

Jin Whan Bae, Gwendolyn Chee, Kathryn Hu↵

April 21, 2018

1 Introduction

For many fuel cycle simulations, it is currently up to the user to define a
deployment scheme, or facility parameters, to make sure that there’s no gap
in the supply chain. Or, the same goal is achieved by setting the facility
capacity to infinity, which does not reflect real-world conditions.

The Demand-Driven Cycamore Archetype project (NEUP-FY16-10512)
aims to develop Cycamore demand-driven deployment capabilities. The
developed algorithm, in the form of Cyclus Institution agent, deploys
Facilities to meet the front-end and back-end demands of the fuel cycle.

This report describes numerical tests for non-optimizing, deterministic-
optimizing and stochastic-optimizing prediction algorithms.

These prediction models are being developed by the University of South
Carolina. In this report, we discuss numerical experiments for testing the
non-optimizing, deterministic optimizing and stochastic optimizing meth-
ods. The numerical experiments will be designed for both the once through
nuclear fuel cycle and advanced fuel cycles.

2 Method

This report lists necessary capabilities of the new Cyclus institution for
demand-driven deployment of fuel cycle facilities. Then the report lists tests
to check correct implementation of the capabilities, with a sample fuel cycle
with well-defined facility parameters.

1



3 Configuration

The user defines prototypes to be deployed for fuel facilities, and reactor
deployment scheme. The reactor deployment causes the demand of fuel
which triggers fuel facility deployment. The detailed input file XML input
schema is shown in Appendix A.

4 Algorithm Flow

The algorithm, upon entering, creates a supply chain with the fuel facilities
and the reactor. Then, at every timestep it calculates the expected demand
from each fuel cycle facility and makes decisions to deploy or decommission.
As a reference, the time step execution for Cyclus is illustrated in figure 1.

Build (kernel)

Tick (agent)

Dynamic Resource Exchange (kernel)

Tock (agent)

Decommission (kernel)

Figure 1: Each timestep in Cyclus follows the five steps in order. Processes
labeled kernel are executed by the Cyclus framework, whereas processes
labeled agent are executed by individual agents. What happens in the ‘Tick’
and ‘Tock’ is thus unique to each archetype.

4.1 Upon Entering (Enternotify)

The algorithm creates a supply chain with the fuel facilities, then calculates
the demand for each facility for a unit quantity of fuel (example in figure
2). It also orders to build fuel cycle facilities for the reactors at timestep 1.

2



Source Reactor Sink[x] [x]

Figure 2: Simple demand flow of materials. The values in the bracket are
demands calculated by the algorithm. The Reactor demands x amount of
fuel, which translates into demands of x from Sink.

4.2 Tick

The algorithm calculates the fuel demand from the fleet of reactors at one
timestep ahead, and the corresponding demand for fuel facilities. The cur-
rent capacity of each fuel cycle facility is also calculated. If the capacity is
smaller than the demand, the algorithm orders to build more facilities to
meet the demand, so that the fuel demand is met for the next timestep.

5 Simulation parameter for Test Scenarios

Simple parameters are given to fuel cycle facilities for the numerical testing
of the algorithm. Only source and reactor facilities are used in the test
scenarios.

Table 1 provides basic parameters for each test scenario. Table 2 provides
the parameters for the source, reactors and sink in the test scenarios.

Table 1: Basic Test Parameters

Test Scenario Parameters Value Units

Duration 15 timesteps
Timestep 1 month
Start Month 1 month
Start Year 2000 year

3



Table 2: Source, Reactor and Sink Parameters

Source Parameters Value Units

Throughput 1 kg
Output Commodity fuel kg
Reactor Parameters Value Units

Cycle Time 1 timesteps
Refuel Time 0 timesteps
Lifetime 1 timesteps
Power Capacity 1 MWe
Assembly Size 1 kg
# assemblies per core 1
# assemblies per batch 1
Input Commodity fuel kg
Output Commodity power MW
Sink Parameters Value Units

Throughput 1 kg
Input Commodity spent uox kg

4



6 Numerical Tests for the Non-optimizing predic-

tion method

The non-optimizing prediction method is tested by comparing its output for
various scenarios against their analytical solutions . In this section, the tests
that must be met is described based on the parameters defined in table 1 and
2 and analytical solution of a defined simple scenario. Unit test examples
are included in Appendix B.

The tests are split into test A types and test B types. Test A refers to
the test scenarios where facilities are expected to be deployed. Test B refers
to the test scenarios where facilities are expected to be decommissioned.

The prediction algorithm for the non-optimizing method has three user-
defined input parameters. The aim of the various test scenarios are to
check if the non-optimizing method archetype will deploy or decommission
facilities correctly when there is a variation in the combination of the three
input parameters. The input parameters are:

1. Initial demand value

2. Number of initial facilities (initial supply)

3. Growth rate of initial demand

The growth in demand is governed by the Equation 1.

Df (timestep) = Di(1 + g)(
timestep

12 ) (1)

Where Df is demand of resource at specific time step, Di is initial demand
and g is growth rate.

Source and reactor facilities are used in the test scenarios. Test sce-
narios A1 to A4 and B1 to B2 only have a source facility and test scenarios
A5 to A7 have both source and reactor facilities. For each test scenario,
there is one table that states the test scenario’s input parameters and an-
other table that states the exact analytical solution. The analytical solution
table does not include deployment of the initial facility that is stated in the
first table.

Additionally, we created base tests for each A-type test scenario that
passes when the supply meets the demand within a given facility number
tolerance. In other words, when the supply exceeds the demand by the spec-
ified tolerance quantity, the test still passes. For this report, the tolerance
is set to one facility. For example in test A-1, the expected total number

5



facilities deployed is 1, and since the facility over-prediction tolerance is 1,
the acceptable range of total number of facilities (x) deployed in the entire
test scenario is 1 < x < 2. If the total number of facilities deployed is within
this range, the base case test will pass.

6.1 Test A-1

In test A-1, only a source facility is present in the test scenario. Table
3 shows the input parameters of the source facility in the test scenario.
Table 4 shows the expected analytical solution based on the test scenario.
Table 5 shows the accepted range of total number of facilities deployed over
the test scenario which will pass the base test, which factors in the facility
over-prediction tolerance of 1.

Table 3: Test A-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 0

Table 4: Test A-1 Analytical Solution

Time Step

No. of Source

Facilities Deployed

1 1
2 to 15 0

Table 5: Test A-1 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

1 < x < 2

6.2 Test A-2

In test A-2, only a source facility is present in the test scenario. Table 6
shows the input parameters of the source facility in the test scenario. Table
7 shows the expected analytical solution based on the test scenario.Table
8 shows the accepted range of total number of facilities deployed over the

6



test scenario which will pass the base test, which factors in the facility over-
prediction tolerance of 1.

Table 6: Test A-2 Scenario Input Parameters

Source Parameter Value Units

Initial demand 2 kg
Initial facilities 1 #
Growth Rate 0

Table 7: Test A-2 Analytical Solution

Time Step

No. of Source

Facilities Deployed

1 1
2 to 15 0

Table 8: Test A-2 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

2 < x < 3

6.3 Test A-3

In test A-3, only a source facility is present in the test scenario. Table 9
shows the input parameters of the source facility in the test scenario. Table
10 shows the expected analytical solution based on the test scenario. Table
11 shows the accepted range of total number of facilities deployed over the
test scenario which will pass the base test, which factors in the facility over-
prediction tolerance of 1.

Table 9: Test A-3 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 1

7



Table 10: Test A-3 Analytical Solution

Time Step

No. of Source

Facilities Deployed

1 2
2 to 12 0
13 1
14 to 15 0

Table 11: Test A-3 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

3 < x < 4

6.4 Test A-4

In test A-4, only a source facility is present in the test scenario. Table
12 shows the input parameters of the source facility in the test scenario.
Table 13 shows the expected analytical solution based on the test scenario.
Table 14 shows the accepted range of total number of facilities deployed over
the test scenario which will pass the base test, which factors in the facility
over-prediction tolerance of 1.

Table 12: Test A-4 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate 1

Table 13: Test A-4 Analytical Solution

Time Step

No. of Source

Facilities Deployed

1 1
2 to 12 0
13 1
14 to 15 0

8



Table 14: Test A-4 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

3 < x < 4

6.5 Test A-5

In test A-5, both a source and reactor facility is present in the test sce-
nario. Table 15 shows the input parameters of the source facility in the test
scenario. Table 16 shows the expected analytical solution based on the test
scenario. Table 17 shows the accepted range of total number of facilities
deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 15: Test A-5 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 0
Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 0 #
Growth Rate 0

Table 16: Test A-5 Analytical Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 1 1
2 to 15 0 0

Table 17: Test A-5 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

Acceptable total No. of Reactor

Facilities Deployed + tolerance

1 < x < 2 1 < x < 2

9



6.6 Test A-6

In test A-6, both a source and reactor facility is present in the test sce-
nario. Table 18 shows the input parameters of the source facility in the test
scenario. Table 19 shows the expected analytical solution based on the test
scenario. Table 23 shows the accepted range of total number of facilities
deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 18: Test A-6 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate 0
Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 1 #
Growth Rate 0

Table 19: Test A-6 Analytical Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 1 1
2 to 15 0 0

Table 20: Test A-6 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

Acceptable total No. of Reactor

Facilities Deployed + tolerance

1 < x < 2 1 < x < 2

6.7 Test A-7

In test A-7, both a source and reactor facility is present in the test sce-
nario. Table 21 shows the input parameters of the source facility in the test
scenario. Table 22 shows the expected analytical solution based on the test
scenario. Table ?? shows the accepted range of total number of facilities

10



deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 21: Test A-7 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 1
Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 0 #
Growth Rate 1

Table 22: Test A-7 Analytical Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 2 2
2 to 12 0 0
13 1 1
14 to 15 0 0

Table 23: Test A-7 Base Test Acceptance

Acceptable total No. of Source

Facilities Deployed + tolerance

Acceptable total No. of Reactor

Facilities Deployed + tolerance

3 < x < 4 3 < x < 4

6.8 Test B-1

In test B-1, only a source facility is present in the test scenario. Table 24
shows the input parameters of the source facility in the test scenario. Table
25 shows the expected analytical solution based on the test scenario.

11



Table 24: Test B-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 0 kg
Initial facilities 1 #
Growth Rate 0

Table 25: Test B-1 Analytical Solution

Time Step

No. of Source

Facilities Deployed

No. of Source

Facilities Decomissioned

1 1 0
2 0 1
3 to 15 0 0

6.9 Test B-2

In test B-2, only a source facility is present in the test scenario. Table 26
shows the input parameters of the source facility in the test scenario. Table
27 shows the expected analytical solution based on the test scenario.

Table 26: Test B-2 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate -1

Table 27: Test B-2 Analytical Solution

Time Step

No. of Source

Facilities Deployed

No. of Source

Facilities Decomissioned

1 to 12 1 0
13 0 1
14 to 15 0 0

7 Numerical Test Results

It was found that none of the exact tests and base case tests passed. The
failures are attributed to three reasons:

12



1. There is a test failure when there is no initial facility present. An
initial condition must be given for the algorithm to understand the
capacity of the facility it deploys.

2. There is a test failure when there is growth in the demandhe algorithm
failed to deploy facilities to meet the increase in demand.

3. There is a test failure when facilities are expected to be decommis-
sioned. There is yet to be an implementation on decommissioning
behavior.

Despite failures in these situations, the non-optimizing method proved to
have commissioning capabilities to meet demand. Because of the limitation
in the algorithm, it is hard to predict demand with precision in such a short
time. However, the same numerical experiments can be applied to the deter-
ministic optimizing algorithm, which holds more promise. The goal is that
the deterministic optimization method will be able to overcome the issues
faced by the non-optimizing method with reference to the requirement of an
initial condition, growth in demand. Also, the capability to decommission
facilities upon oversupply will be added.

Appendix C reflects the numerical experiment solution output by the
non-optimizing prediction algorithm for each test scenario defined in section
6.

13



Appendix A - parameter configuration

Appendix A shows the json file that contains the simulation parameters that
are common between all the test scenarios discussed in Section 6.

template = {

"simulation": {

"archetypes": {

"spec": [

{"lib": "agents", "name": "NullRegion"},

{"lib": "cycamore", "name": "Source"},

{"lib": "cycamore", "name": "Reactor"},

{"lib": "cycamore", "name": "Sink"},

{"lib": "d3ploy.no_inst", "name": "NOInst"}

]

},

"control": {"duration": "15", "startmonth": "1", "startyear": "2000"},

"recipe": [

{

"basis": "mass",

"name": "fresh_uox",

"nuclide": [{"comp": "0.711", "id": "U235"}, {"comp": "99.289", "id": "U238"}]

},

{

"basis": "mass",

"name": "spent_uox",

"nuclide": [{"comp": "50", "id": "Kr85"}, {"comp": "50", "id": "Cs137"}]

}

],

"facility": [{

"config": {"Source": {"outcommod": "fuel",

"outrecipe": "fresh_uox",

"throughput": "1",

"source_record_supply": "fuel"}},

"name": "source"

},

{

"config": {"Sink": {"in_commods": {"val":"spent_uox"},

"max_inv_size": 1,

"sink_record_demand": "fuel_cap"}},

14



"name": "sink"

},

{

"config": {

"Reactor":{

"assem_size":"1",

"cycle_time": "1",

"fuel_incommods": {"val": "fuel"},

"fuel_inrecipes": {"val": "fresh_uox"},

"fuel_outcommods": {"val": "spent_uox"},

"fuel_outrecipes": {"val": "spent_uox"},

"n_assem_batch": "1",

"n_assem_core": "1",

"power_cap": "1",

"refuel_time": "0",

"reactor_fuel_demand": "fuel_reactor"

}

},

"name": "reactor"

}]}}

15



Appendix B - Sample Test Code

Sample test code for test A-1

Appendix B shows the python file that contains the a segment of the simu-
lation parameters that are unique to test A-1 and the code for test A-1.

# Test A_1

INIT_DEMAND = copy.deepcopy(TEMPLATE)

INIT_DEMAND["simulation"].update({"region": {

"config": {"NullRegion": "\n "},

"institution": {

"config": {

"NOInst": {

"calc_method": "arma",

"demand_commod": "POWER",

"demand_std_dev": "0.0",

"growth_rate": "0.0",

"initial_demand": "1",

"prototypes": {"val": "source"},

"steps": "1",

"supply_commod": "fuel"

}

},

"name": "source_inst"

},

"name": "SingleRegion"

}})

@pytest.mark.base

def test_a1_init_demand():

# tests if NOInst deploys a source

# given initial demand and no initial facilities

output_file = 'init_file.sqlite'

input_file = output_file.replace('.sqlite', '.json')

with open(input_file, 'w') as f:

json.dump(INIT_DEMAND, f)

s = subprocess.check_output(['cyclus', '-o', output_file, input_file],

universal_newlines=True, env=ENV)

# check if ran successfully

assert("Cyclus run successful!" in s)

16



# getting the sqlite file

cur = get_cursor(output_file)

# check base solution

source_base = cur.execute(query).fetchone()

assert(1 <= source_base[0] <= (1 + tol))

@pytest.mark.exact

def test_a1_init_demand_exact():

output_file = 'init_file.sqlite'

cur = get_cursor(output_file)

# check exact solution

source_exact = cur.execute(query + " AND EnterTime = 1").fetchone()

assert(source_exact[0] == 1)

17



Appendix C - Numerical Experiment Solution for

test scenarios

Test A-1

Table 28: Test A-1 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

1 to 15 0

Test A-2

Table 29: Test A-2 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

1 0
2 1
3 1
4 1
5 0
6 1
7 to 15 0

Test A-3

Table 30: Test A-3 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

1 to 15 0

Test A-4

Table 31: Test A-4 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

1 to 15 0

18



Test A-5

Table 32: Test A-5 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 to 15 0 0

Test A-6

Table 33: Test A-6 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 0 0
2 1 0
3 1 0
4 1 0
5 0 0
6 1 0
7 to 15 0 0

Test A-7

Table 34: Test A-7 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

No. of Reactor

Facilities Deployed

1 to 15 0 0

Test B-1

Table 35: Test B-1 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

No. of Source

Facilities Decomissioned

1 to 15 0 0

19



Test B-2

Table 36: Test B-2 Numerical Experiment Solution

Time Step

No. of Source

Facilities Deployed

No. of Source

Facilities Decomissioned

1 to 15 0 0

20


